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Abstract

We consider the complexity of properly learning concept classes, i.e. when the learner must output
a hypothesis of the same form as the unknown concept. We present the following new upper and lower
bounds on well-known concept classes:

• We show that unless NP = RP, there is no polynomial-time PAC learning algorithm for DNF
formulas where the hypothesis is an OR-of-thresholds. Note that as special cases, we show that
neither DNF nor OR-of-thresholds are properly learnable unless NP = RP. Previous hardness
results have required strong restrictions on the size of the output DNF formula. We also prove that
it is NP-hard to learn the intersection of ` ≥ 2 halfspaces by the intersection of k halfspaces for
any constant k ≥ 0. Previous work held for the case when k = `.

• Assuming that NP 6⊆ DTIME(2nε

) for a certain constant ε < 1 we show that it is not possible to
learn size s decision trees by size sk decision trees for any k ≥ 0. Previous hardness results for
learning decision trees held for k ≤ 2.

• We present the first non-trivial upper bounds on properly learning DNF formulas. More specifi-
cally, we show how to learn size s DNF by DNF in time 2Õ(

√
n log s).

The hardness results for DNF formulas and intersections of halfspaces are obtained via specialized
graph products for amplifying the hardness of approximating the chromatic number as well as applying
recent work on the hardness of approximate hypergraph coloring. The hardness results for decision trees,
as well as the new upper bounds, are obtained by developing a connection between automatizability in
proof complexity and learnability, which may have other applications.
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1 Introduction

A fundamental goal of computational learning theory is to establish hardness results for PAC learning con-
cept classes. Seminal work due to Kearns and Valiant [KV94a] has shown that under the assumption that
certain cryptographic primitives are computationally intractable (e.g. inverting one-way functions), there
are no polynomial-time learning algorithms for concept classes which are expressive enough to compute
pseudorandom-functions. Subsequent work [Kha93, NR97, JKS02] has shown that even constant depth,
polynomial size circuits (often referred to as AC0) are capable of computing pseudo-random objects and are
unlikely to be learnable in polynomial time.

Still, several well-studied concept classes seem too weak to compute cryptographic primitives, such as
polynomial-size DNF formulas, intersections of halfspaces, and decision trees. For all of these concept
classes the existence of a polynomial-time PAC learning algorithm remains a challenging open problem.
The primary contribution of this work is an array of new negative results for learning DNF formulas, inter-
sections of halfspaces, and decision trees. Our hardness results apply to representation dependent learning
algorithms, algorithms where the output hypothesis is required to be a member of a restricted class of
polynomial-time computable functions.

1.1 Previous Work

Previous representation dependent hardness results for learning concept classes applied to proper learning
algorithms and required strong restrictions on the size of the hypothesis output by the learning algorithm
[BR92, Gol78, KLPV87, PV88, NJS98]. In each case, the hardness assumption required is not crypto-
graphic, but a worst-case assumption on the complexity of NP (e.g. NP 6= RP).

Initial hardness results for properly learning DNF formulae due to Pitt and Valiant [PV88] show that
coloring a k-colorable graph on n vertices using ` colors can be reduced to learning k-term DNF formulae
over n variables by `-term DNF formulae. In particular, combined with the hardness results on chromatic
number due to Feige and Kilian [FK96], their result implies that unless NP = RP it is hard to learn nγ-term
DNF by n1−γ-term DNF. Pitt and Valiant also show a similar reduction from k-NM-Colorability [GJ79]
(also called hypergraph coloring) to learning of DNF formulae by DNF formulae. They used this reduction
to show that 2-term DNF formulae are not learnable properly (unless NP = RP). Combined with recent
results on the hardness of approximate hypergraph coloring [DRS02], their reduction implies that 2-term
DNFs are NP-hard to learn by k-term DNFs for any constant k (we include this reduction for completeness
in Section 5.1).

The best result along these lines is due to Nock et al. [NJS98] who have used reductions from generalized
coloring problems to show that it is hard to output a DNF formula whose size is at most O(kanb) times the
size of the unknown k-term DNF formula for a ≤ 2, b ≥ 0 and k = Ω(nγ) for any γ > 0.

The best hardness result for learning intersections of halfspaces is due to Blum and Rivest [BR92]. They
prove that unless NP = RP, it is hard to learn intersections of k halfspaces by intersections of k halfspaces
for any k ≥ 2.

For decision trees, Hancock et al. [HJLT95] have shown that it is hard to learn size s decision trees over
n variables by size s · 2log1−γ s decision trees for some γ > 0 unless NP ⊆ RTIME(2logO(1) n). The result
holds for s = Ω(n).

We note here that the above hardness results hold for proper Occam algorithms, learning algorithms
which work by receiving a suitably large set of training examples and outputting a small hypothesis con-
sistent with the examples. It is not known, in general, if the existence of a proper PAC learning algorithm
for a concept class implies the existence of a proper Occam algorithm for the class[PB90]. In particular,
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it is not known for the classes of DNF formulas and intersections of halfspaces. Our hardness results for
DNF formulas and intersections of halfspaces hold for any proper PAC learning algorithm and overcome
this limitation.

Several results are known for the hardness of learning DNF in the exact model with membership and
equivalence queries (see Hellerstein and Raghavan [HR02] for details).

1.2 Our Results

We provide new hardness results on the complexity of learning DNF formulas, intersections of halfspaces,
and decision trees which place far fewer restrictions on the size and form of the learning algorithm’s output
hypothesis. We complement these hardness results by describing new algorithms for achieving non-trivial
upper bounds on the proper learnability of DNF formulas and decision trees.

1.2.1 Upper Bounds

By making a connection between proper learning and the automatizability of certain propositional proof
systems, we give the first non-trivial upper bounds on the complexity of properly learning polynomial-size
DNF formulas:

Theorem 1 DNF formulas of size s are properly learnable in time nO(
√

n log s).

The above 2Õ(
√

n) upper bound for properly learning polynomial-size DNF formula should be contrasted
with the 2Õ(n1/3)-time algorithm for learning DNF due to Klivans and Servedio [KS01]; theirs is the fastest
known DNF learning algorithm but does not output a DNF formula as a hypothesis. Bshouty[Bsh96] had
given an nÕ(n1/2) algorithm for PAC learning DNF formulas that is similar to ours, but his algorithm outputs
a decision list as a final hypothesis.

1.2.2 Hardness for Learning Decision Trees and Juntas

Our hardness results for learning decision trees and juntas assume the intractability of the parameterized
minimum hitting set problem. Roughly speaking, an algorithm for the parameterized minimum hitting set
problem takes as input a system S of m subsets of [n] and a parameter k, and outputs a hitting set of size
k for S if one exists (see Definition 8 for a precise definition). The parameter k is supposed to be a slowly
growing function with respect to n (like k = log n). This problem is complete for the class W[2] of the
parameterized hierarchy [DF98].

Theorem 2 Let C be the concept class of all decision trees. Assume that no randomized algorithm ap-
proximates parameterized minimum hitting set to within a factor d in polynomial time, for k = O(log n)
and any constant d. Then there is no algorithm A such that for every c ∈ C, distribution D and error
parameter ε, A runs in time poly(n, |c|, 1/ε) and with probability 3/4 outputs a decision tree T such that
Prx∈D[T (x) = c(x)] ≥ 1− ε.

The above theorem combined with a result of [AKP04] implies the following theorem:

Theorem 3 Decision trees are not properly PAC learnable in polynomial time unless SAT is computable
in randomized time 2nλ

for some λ < 1.
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An incomparable hardness result for learning decision trees can be found in Hancock et al. [HJLT95].
We also show that hardness of approximating the parameterized minimum hitting set problem implies

some partial hardness results for learning juntas, functions which depend on only a small subset of relevant
variables (see Section 4).

1.2.3 Hardness for Learning DNF Formulas

Learning DNF formulas is one of the central challenges in computational learning theory. We give strong ev-
idence that there are no polynomial-time learning algorithms for DNF formulas which output DNF formulas
or unions of halfspaces as output hypotheses:

Theorem 4 Let C be the concept class of DNF formulas. If there exists an algorithm A such that for every
c ∈ C, distribution D and error parameter ε, A runs in time poly(n, |c|, 1/ε) and with probability 3/4
outputs an OR-of-thresholds formula f such that Prx∈D[f(x) = c(x)] ≥ 1− ε, then NP = RP.

This improves on previous work due to Nock et al. [NJS98] in two ways: 1) our hardness results hold
when the size of the output hypothesis depends on ε and 2) our output hypothesis can be an OR of thresholds
(rather than simply an OR of ANDs). In our theorem above, the output hypothesis cannot be larger by any
polynomial (in n, 1/ε, and s) factor, unless RP equals NP.

1.2.4 Hardness for Learning Intersections of Halfspaces

Let h = sign(
∑n

i=1 wixi − θ) where each wi and θ are integers; h naturally induces two halfspaces: the set
of points in {0, 1}n which make h positive and the set of points which make h negative (h is often referred
to as a linear threshold function). Although several polynomial-time algorithms for learning halfspaces are
known (e.g. [BEHW87]), a longstanding open problem in learning theory is to develop polynomial-time
algorithms for learning intersections of halfspaces (i.e. functions of the form h = ∧k

i=1hi where each hi is
a linear threshold function).

The above theorem proves as a special case that intersections of halfspaces are not properly learnable
unless NP = RP. If we wish to restrict the concept class to intersections of just two halfspaces (even for
this case no polynomial-time learning algorithms are known), we can prove the following hardness result:

Theorem 5 Let C be the concept class of intersections of two halfspaces. If there exists an algorithm A
such that for every c ∈ C, distribution D and error parameter ε, A runs in time poly(n, |c|, 1/ε) and with
probability 3/4 outputs f , an intersection of k halfspaces for any constant ` ≥ 0 such that Prx∈D[f(x) =
c(x)] ≥ 1− ε, then NP = RP.

The result of Blum and Rivest [BR92] showed that learning the intersection of 2 halfspaces by the
intersection of 2 halfspaces is NP-hard (with respect to randomized reductions).

1.3 Our Approach

Our techniques can be divided into two categories: 1) negative results based on the intractability of ap-
proximate graph and hypergraph coloring and 2) positive and negative results obtained by establishing a
connection between automatizability of propositional proof systems and proper learnability.
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1.3.1 Amplifying Hardness Results for Approximate Graph Coloring

For proving hardness results for properly learning DNF and intersections of halfspaces we amplify known
hardness results for the problem of distinguishing between graphs with small and large chromatic number.
Feige and Kilian [FK96] have proved that for any γ > 0 it is NP-hard (under randomized reductions) to
distinguish between graphs with chromatic number O(nγ) and graphs with chromatic number Ω(n1−γ).
This result combined with known reductions from graph coloring to properly learning DNF formulas (i.e.
[PV88]) implies that it is NP-hard to distinguish between distributions induced by nγ-term DNF formulas
and n1−γ-term DNF formula.

We wish to amplify this n1−γ bound and prove hardness results for na-term DNF formulas (and inter-
sections of na halfspaces) for any a ≥ 0. To do this we apply specialized graph products (along the lines
of Linial and Vazirani [LV89]) to create distributions which amplify the size of the underlying chromatic
number. In addition, we provide an accompanying transformation of DNF formulas and intersections of
halfspaces into “normal forms” which satisfy only examples derived from subsets of independent sets from
the product. Many terms or halfspaces are required for a good approximation to these distributions if and
only if the original graph had large chromatic number.

For proving hardness results for learning the intersection of two halfspaces, we make critical use of
recent hardness results due to Dinur et al. [DRS02] on the hardness of coloring 2-colorable, 3-uniform
hypergraphs. We give a reduction from `-coloring k-colorable, 3-uniform hypergraphs to properly learning
intersections of k halfspaces by ` halfspaces.

1.3.2 Automatizability and Proper Learning

A propositional proof system S is said to be automatizable if there is an algorithm A which takes as input
a CNF formula f , and returns a proof of f , in time polynomial in the size of the shortest S-proof of f .
Automatizability is an important concept; while a proof system may be extremely powerful and admit short
proofs of many hard statements, if it is impossible to find these proofs quickly, then for all practical purposes
we are no further ahead than we were with a naive exhaustive proof method.

There are two types of automatizability for any proof system S. The first type (called automatizability)
requires that the automatizing algorithm return an S-proof of f . The second type (called weak automati-
zability) only requires that the algorithm returns any polynomially-verifiable proof, and not necessarily an
S-proof. Informally, we have the following relationship. Let C be a circuit class, and let P (C) be a proof
system which manipulates formulas from C. Three important examples are: (i) When C is the class of
decision trees, the corresponding proof system is DPLL; (ii) When C is the class of DNF formulas, the cor-
responding proof system is Resolution, and (iii) When C is the class of intersections of threshold formulas,
a corresponding proof system is Cutting Planes. Then automatizability of proof system P (C) corresponds
to proper PAC learning of C and weak automatizability of P (C) corresponds to learnability of C. In both
cases (automatizability and learnability), the desired algorithm is searching for an object over C. We will
see that techniques used to obtain positive and negative results for automatizability of various proof systems
can be exploited to obtain new learnability results.
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2 Preliminaries

2.1 Learning models

Our learning model is Valiant’s well known Probably Approximately Correct (PAC) learning model [Val84].
In this model for a concept c and distribution D over X an example oracle EX(c, D) is an oracle that upon
request returns an example (x, c(x)) where x is chosen randomly with respect to D independently of any
previous examples. For ε ≥ 0 we say that function g ε-approximates function f with respect to distribution
D if PrD[f(x) = g(x)] ≥ 1− ε. We say that an algorithm A efficiently learns concept class C if for every
ε > 0, δ > 0, n, c ∈ C, and distribution Dn over Xn = {0, 1}n, A(n, ε, δ), runs in time polynomial in n,
1/δ, 1/ε, |c| and outputs, with probability at least 1− δ, an efficiently computable hypothesis h from some
class of functions H that ε-approximates c. We assume throughout the paper that δ = 1/3 (other values of δ
can be handled easily). When H = C (the hypothesis must be some concept in C) then the algorithm A is
a proper PAC learning algorithm. Frequently we will prove hardness results for cases where H is actually
a larger class of functions than C; such results are thus stronger than traditional hardness results for proper
learnability.

2.2 Concept Classes

A DNF formula is a logical formula equal to the OR of a number of ANDs, say (x1 ∧ x3 ∧ x4)∨ (x5 ∧ x2),
for example. A k-term DNF is a DNF formula equal to the OR of k ANDs. A halfspace or threshold is a
function f = sign(

∑n
i=1 αixi − θ) where αi (for all i) and θ are integers. An intersection of k halfspaces

is a function g = ∧k
i=1hi where each hi is a halfspace. A neural network with k hidden nodes is a function

g = f(h1(~x), . . . , hk(~x)) where each hi is a halfspace and f is an arbitrary Boolean function. Each hi is
called a hidden node. The halfspace hi is origin-centered if the corresponding θ = 0.

2.3 Propositional Proof Complexity

The resolution principle says that if C and D are clauses and x is a variable, then any assignment that
satisfies both of the clauses C ∨ x and D ∨ ¬ x also satisfies C ∨ D. A resolution refutation for a CNF
formula F consists of a sequence of clauses C1, C2, . . . , Cs where (i) each clause Ci is either a clause of F ,
or is a resolvent of two previous clauses and (ii) Cs is the empty clause, denoted Λ. A tree-like Resolution
refutation is a Resolution refutation where the underlying directed acyclic graph is a tree. A DPLL refutation
of an unsatisfiable formula F is a decision tree for f with the additional property that for every path p in
the decision tree and corresponding partial truth assignment ρ, the leaf of p is labelled by a clause in f that
is falsified by ρ. It is well known that tree-like Resolution refutations and DPLL refutations are equivalent.
The automatizability problem for proof systems, formalized in [BPR97], is to find effective algorithms for
constructing refutations whose size is close to optimal:

Definition 6 For a propositional proof system S, let s(F ) denote the size of the smallest refutation of for-
mula F in S. S is automatizable if there exists an algorithm that on input F (on n variables and m clauses),
outputs an S-refutation of f in time polynomial in s(F ) and n and m. More generally S is q(s, n, m)-
automatizable if there exists an algorithm that runs in time q(s(F ), n, m) and outputs an S-refutation of
F .
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3 Upper bounds for Properly Learning Decision Trees and DNF

In [BKPS98] (see also [BSW99, CEI96]), algorithms were presented for automatizability of DPLL and
Resolution. In this section, we will show how these algorithms can be used to prove Theorem 1. We first
present a proof of our theorem and then discuss how it can be viewed as a modification of the algorithm
presented in [BKPS98].

Proof: (of Theorem 1)
Let P be a DNF formula. P is b-bounded if all terms appearing in it have size at most b. Fix ε, δ, n,

and s. The algorithm will begin by obtaining a set S of m labelled examples chosen at random according
to the underlying distribution D. (The value of m will be chosen later.) The algorithm will then produce
a hypothesis consistent with S. Then using a standard argument, it can be shown that any algorithm that
produces a hypothesis from a relatively small set of hypotheses, that is consistent with a set of m examples
(m sufficiently large), will also satisfy the requirements of PAC learning, with high probability.

First, we need a subroutine, called Bounded-search, which takes as input a set of labelled examples
over n variables, S, |S| = m, and an integer parameter b, and finds a b-bounded DNF consistent with S,
if one exists. The subroutine works by learning a single disjunction over a new set of nb variables (each
variable corresponds to one of the nb different terms of the unknown DNF of length b). It is well-known
that disjunctions over N variables can be learned in time O(N) using O(N/ε) examples. The output of the
subroutine can be converted to a DNF with at most nb terms. In our context, this subroutine runs in time
T0(n,m, b) = O(nb + m).

The main algorithm called Search takes as input a set of m labelled examples over n variables, S, and
an auxiliary parameter b. The output of Search will be a decision tree with the leaves of the tree labelled
by b-bounded DNF formulas. The algorithm is as follows. First, we use Bounded-search(S, b) to find a
b-bounded DNF formula consistent with S if one exists. If not, then for each of the 2n literals (a literal
is a variable or its negation) l, apply Search to the set of labelled examples Sdl=1, i.e., the set of labelled
examples in which literal l is set to 1. in order to identify the literal l for which Search(Sdl=1) terminates
fastest. These 2n calls to Search are executed in a sequence of parallel rounds; in round i the ith step of
each of the 2n calls is performed. As soon as the first of the calls terminates, say for literal l∗, all of the
other calls are aborted, except the call corresponding to ¬ l∗, which is run to completion. The output of
Search(S, b) is a decision tree where the leaves of the decision tree are labeled with b-bounded DNF’s, the
root is labelled by l∗, and the left subtree is a hypothesis consistent with the samples Sdl∗=0, and the right
subtree is a hypothesis consistent with the samples Sdl∗=1. The analysis of the algorithm will rely on the
following technical fact, whose proof can be found in Bshouty et al. [Bsh96]:

Proposition 7 Suppose that T (n, s) is a function defined for nonnegative integers n and s > 0 that satisfies,
for some positive increasing function h(n), positive constant C and λ > 1:

T (0, s) ≤ h(0)
T (n, s) ≤ h(n) if s ≤ 1
T (n, s) ≤ h(n) + CnT (n− 1, s/λ) + T (n− 1, s) if n ≥ 1 and s > 1

Then T (n, s) ≤ h(n)(1 + C logλ sn2 logλ s).

As a warmup, we first show how to obtain a proper learning algorithm for decision trees that runs in
time nO(log s). Set b = 0, and set m = (nO(log s) + log(1/δ))/ε. Since b = 0, the output by Search
will be an ordinary decision tree. We upper bound the running time of the algorithm in terms of s. Let
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T1(n, s; m) denote the maximum running time of Search(S, 0) over all sets of m labelled examples S, with
n underlying variables and such that there is a decision tree consistent with S of size at most s. Let xi be the
splitting variable at the root. The left and right branches of the tree give decision trees for Sdxi and Sd¬xi ,
and the smaller of these is of size at most s/2. Hence at least one of the recursive calls terminates after at
most T1(n− 1, s/2;m) steps, and so the literal l∗ is found after at most that number of rounds. The time for
each round is at most O(n) as we need make recursive calls for at most 2n literals. Once l∗ is found, it takes
at most 2nT1(n− 1, s; m) steps to complete the call to Search(Sd¬ l∗). Thus, we conclude that T1(n, s;m)
satisfies the recurrence of the above Proposition with h(n) = T0(n, m, b) and λ = 2. We conclude that
T1(n, s; m) = nO(log s)m. The algorithm thus produces a hypothesis of size nO(log s) in time nO(log s)m
that is consistent with the m samples. The probability that any given hypothesis has error more than ε but is
consistent with all m samples is at most (1 − ε)m. A standard Occam argument [KV94b] shows that since
m = nO(log s)/ε, our output hypothesis will have error at most ε with high probability.

Now to prove Theorem 1, let m = (n
√

n log s+log(1/δ))/ε. For a DNF formula F , let F [b] be the subset
of terms of F of size greater than b. For a set of labelled examples S, let DNF (S, b) denote the minimum
over all DNF formulas F consistent with S, of |F [b]| (so that for b < 0, DNF (S) = DNF (S, b)). Let
T2(n, s; m, b) denote the maximum time needed by Search(S, b) on sets of labelled examples S over n
variables, such that |S| = m and DNF (S, b) ≤ s. Note that T2(n, s; m, b) ≤ T0(n,m, b) if s < 1 and
T2(0, s; m, b) = O(1). Suppose n and s are both at least 1. Let S be a set of labelled examples over n
variables, |S| = m and let F be a DNF consistent with S such that F [b] ≤ s. For a literal l, let c(b, l)
be the number of terms of F [b] containing l. The average of c(b, l) over literals is greater than |F [b]|b/2n
and hence there exists a literal l with c(b, l) > b|F [b]|/2n. Note that the DNF formula F dl=0 for Sdl=0

has at most |F [b]|(1 − b
2n) terms, and hence T2(n, s; m, b) satisfies the recurrence for T in the proposition

with λ = 2n
2n−b and h(n) = T0(n,m, b). Applying the proposition, we conclude that T2(n, s; m, b) ≤

T0(n,m, b)nO(n
b

log s). Choosing b =
√

n log s, yields an upper bound of nO(
√

n log s) · m, to complete
the proof of the theorem. Recall that the output of Search is a decision tree with leaves labelled by DNF
formulas. Such a hypothesis is a DNF formula itself, consistent with all of S, and of size n

√
n log s. Again

by our choice of m, a straightforward Occam argument shows that the probability that there is a hypothesis
of this size consistent with S, but with error at least ε with respect to D, is at most δ. 2

3.1 Discussion: Relationship to Previous Work

We mention here how the above algorithms are variations on results in proof complexity (e.g. [BKPS98])
used to find size s DPLL proofs in time nO(log s), and size s Resolution proofs in time nO(

√
n log s). Let f

be an unsatisfiable CNF formula with n variables and m clauses. Modify Search to take as input a CNF
formula f with n variables and m clauses (rather than a set of examples), and an auxiliary parameter b. The
output of modified Search produces a decision tree with leaves of the tree labelled by width b Resolution
refutations. Similarly modify Bounded-search to take as input an unsatisfiable CNF formula f and an
integer parameter b, and finds a width b Resolution refutation for f , if one exists. Now if f has as size s
DPLL refutation, run modified Search with b = 0, and if f has a size s Resolution refutation, run modified
Search with b =

√
n log s. The same analysis as above yields the automatizability algorithms for DPLL

and Resolution, respectively.
It is also interesting to note that a previous algorithm for non-proper learning of DNF due to Bshouty

[Bsh96] independently used an almost identical recurrence. His learning algorithm worked by proving a
structural theorem about DNF (namely that DNF can be computed by high-rank decision lists) and applying
an algorithm for learning a decision list. One interpretation of our results is that automatizability algorithms
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“construct” or make effective the underlying structural results from [Bsh96].

4 Hardness of Learning of Decision Trees and Juntas

For an unsatisfiable CNF formula f , the search problem associated with f is to find a violated clause, given
a truth assignment to the variables underlying f . Because a DPLL refutation for f produces a decision tree
for solving the search problem associated with f , automatizability of DPLL is strongly connected to PAC
learning decision trees with a respect to a distribution induced by the search problem associated with f . In
fact, many of the hardness results of this section were inspired by a paper of Alekhnovich and Razborov
[AR01] on non-automatizability of Resolution and DPLL. Our hardness assumptions will center around the
following problem:

Definition 8 The Parameterized Minimum Hitting Set Problem (PMHS), with parameters n, m and k, takes
as input a system of m subsets of [n], ~S = (S1, ..., Sm). The output is a hitting set of size k for ~S, i.e. a set
I s.t. ∀j I ∩ Sj 6= ∅, and |I| = k, if one exists.

This classical optimization problem is equivalent to a more popular Set Cover problem. We added the
adjective “parameterized” to stress that the parameter k is supposed to be much smaller than n (typically
k = log n or smaller). This problem is complete for the class W[2] of the parameterized hierarchy [DF98].

4.1 Learning Juntas vs Approximating Minimum Hitting Set

The following construction goes along the lines of [HJLT95].

Definition 9 Let ~S = (S1, ..., Sm) be a set system. Let D~S be a distribution on {0, 1}n given by Prx∼D~S
[x =

0n] = 1/2 and ∀j ∈ [m] Prx∼D~S
[x = χSj ] = 1/2m, where χSj is the characteristic vector of Sj . Define a

partial function h~S : {0, 1}n → {0, 1} so that

∀i ∈ [m] h~S(χSi) = 1, h~S(0n) = 0.

Below we consider the complexity of learning the concept class of juntas. A function h(x1, ..., xn) is
said to be a k-junta if its value is completely determined by the input values of some k variables xi1 , ..., xik .
We represent a k-junta as an index set I of its essential coordinates and the truth table of size 2k on these
coordinates. Learning juntas has recently been studied by Mossel et al. [MOS03] who gave a time n.704k

algorithm for learning a k-junta with respect to the uniform distribution on inputs.

Theorem 10 Assume that it is possible to approximate PMHS within factor f1(k) in time f2(k)nO(1), where
f1, f2 are arbitrary functions. (That is, given ~S, outputs a hitting set of size at most f1(k)OPT (~S), where
OPT (~S) is the minimal hitting set size for ~S.) Then k-juntas are PAC learnable in time f(k)nO(1) for
f(k) = [f1(k) + f2(k)]O(1), and moreover the hypothesis produced by the algorithm is an f1(k)k-junta.

Proof: Let D be a distribution on {0, 1}n. Fix ε, δ > 0. Choose m = f1(k)n2/(εδ). Given examples
from a k-junta h(x) with x ∼ D we generate a table of m samples (x1, h1), ..., (xm, hm), where hi =
h(xi). Our goal is to find an f1(k)k-junta consistent with all m samples. We write the following CNF
φ{(xi,hi)}(y1, ..., yn):

9



φ{(xi,hi)} =
∧

hi 6=hj

∨

(xi)t 6=(xj)t

yt (1)

We claim that φ{(xi,hi)} has a satisfying assignment of weight k. Indeed since h is a k-junta there exists
a set of coordinates I ⊂ [n] of size k that completely determine the value of h, thus if h(xi) 6= h(xj) there
is k ∈ I for which (xi)k 6= (xj)k. If we set y = χI then we get a satisfying assignment for (1) of weight
k. Moreover, given any satisfying assignment y of weight k′ for (1) one may construct k′-junta ĥ consistent
with m samples in time 2k′ . For this it is sufficient to choose a function that depends only on coordinates
I = {i|yi = 1} consistent with m samples.

Note that CNF φ{(xi,hi)}(y1, ..., yn) is monotone w.r.t. yi thus we may regard it as an instance of the
minimum hitting set problem, in which sets correspond to disjunctions. Given an f1(k)-approximation
algorithm for the latter problem one may find a hypothesis ĥ that depends only upon f1(k)k variables
consistent with all m samples. We finish the proof by the standard computation of the probability of choosing
the correct hypothesis. 2

Corollary 11 Assume that no randomized algorithm approximates PMHS within factor c in time f(k)nO(1).
Then no algorithm given examples from a k-junta h(x) chosen from distribution D finds a (1 − 1/nO(1))-
approximation of h by a (ck)-junta h′ in time f(k)nO(1).

Proof: Assume for the sake of contradiction that there exists a learning algorithm A with the properties
described in the statement. Consider an instance of PMHS ~S, k. We run the algorithm A on h~S w.r.t.
the distribution D~S . Because D~S gives a non-negligible weight to every word in {0n, χS1 , ..., χSm} the
approximating function that depends only on ck variables ought to compute h~S on D~S exactly, thus any
such function corresponds to a hitting set of size ck. 2

4.2 Lower Bounds on Learnability of Decision Trees

In this section we give the proof of Theorem 2. In the above subsection we outlined the proof that the
infeasibility of approximating the parameterized minimum hitting set implies that it is hard to learn a k-
junta (on a special distribution) in polynomial time. This result itself implies that given access to examples
from a function computable by size S decision tree it is hard to construct an approximating size c·S decision
tree in polytime (and this argument is similar to the reduction in [HJLT95]). However we want to obtain a
stronger polynomial gap for learning decision trees, thus we will use a different type of amplification.

In order to amplify our gap, we replace each variable xi (from Section 4.1) by ` variables that sum up
to xi modulo 2. On the one hand, if k variables determine the function (from Section 4.1), then clearly lk
variables determine the new amplified function, thus yielding a decision tree of size 2`k. On the other hand,
if the function (from Section 4.1) requires k′ >> k variables to be determined, then intuitively one needs to
query all or most of the `k′ new variables to compute the amplified function. This results in a decision tree
of size 2`k′ . Thus, by appropriately choosing `, one gets a better gap than the one implied by Section 4.1.

We proceed with the formal proof below. In this section, we will assume that k < log n/12.

Definition 12 For an instance ~S with parameters n, m, k of PMHS problem we build a partial function g~S,k
along with the distribution on its instances D~S,k in the following way.

Fix the maximal ` satisfying 2`k < n (thus ` = blog n/kc). Let yj
i for i ∈ [n], j ∈ [`] be random

Boolean variables chosen according to the following experiment. Choose x = (x1, ..., xn) according to

10



D~S . For every i ∈ [n] choose a tuple y1
i , ..., y

`
i uniformly from all tuples satisfying

⊕`
j=1 yj

i = xi. Denote

by D~S,k the resulting distribution on yj
i . Finally let g~S,k(y

1
1, ..., y

`
n) = h~S

(⊕`
j=1 yj

1, ...,
⊕`

j=1 yj
n

)
.

Thus g~S,k is a function that depends upon n · blog n/kc bits. In the next two theorems we show that
the decision tree approximation complexity of g~S,k on D~S,k is tightly connected to the minimum hitting set

γ(~S). These results will imply lower bounds on proper learnability of decision trees modulo the hardness of
approximating the minimum hitting set.

Theorem 13 (upper bound) Assume that γ(~S) ≤ k. Then there exists a decision tree of size n that com-
putes g~S,k on D~S,k with probability 1.

Proof: If γ(~S) ≤ k then there exists a set of x-variables of size k that determine the value of h~S and hence
there exists a set of `k y-variables that determine the value of g~S,k. Consider the decision tree that branches
upon all 2`k different assignments to these variables and outputs the value according to that of h~S(x). This
decision trees correctly computes g~S,k on all inputs and by our choice of `, the size of the tree is 2`k < n. 2

Theorem 14 (lower bound) For c ≥ 3, if γ(~S) > ck, then any decision tree T that approximates g~S,k with

error less than 1/(5m) has size at least nc(1−11/`).

Proof:
Fix a decision tree T that contains less than nc(1−11/`) nodes. We will prove that it has a non-negligible

error in computing g~S,k. Define a random restriction ρ on yj
i in the following way. For every i ∈ [n] choose

a random index vi ∈ [`] and set values to the variables y1
i , ..., y

vi−1
i , yi

vi+1, ..., y`
i independently at random.

Thus ρ is a random restriction that sets all but n variables.

Lemma 15 Let t be a term (a conjunction of literals) over yj
i of size w. Then

Pr[t|ρ 6= 0] ≤ 2−w(1−10/`).

Proof: Denote by ti the subterm of t that includes all literals in variables y1
i , ..., y

`
i in t, let wi = |ti|. Since

the restrictions on yj
i are independent for different i and w =

∑
i wi it is sufficient to prove the lemma for

every single ti. The probability that ti is not mapped to 0 by ρ is equal to

`− wi

`
· 2−wi +

wi

`
· 2−(wi−1) = (1 + wi/`) · 2−wi < 2−wi(1−10/`).

In the above equation, the first summand is the probability that ti is not mapped to 0 by ρ and the unset
variable of yi is not in ti, and the second summand is the probability that ti is not mapped to 0 by ρ, and the
unset variable of yi is in ti.

2

Corollary 16 For every path π of length w in the decision tree T , for ~y chosen from D~S,k, the probability

that π is consistent with ~y is less than 2−w(1−10/`).
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Proof: We describe a different experiment generating the values for yj
i that leads to the same distribution

D~S,k. First we pick a random restriction ρ as described above, it assigns n(`−1) variables. Next we choose
a vector x ∈ {0, 1}n according to D~S . Finally for every i we choose the remaining coordinate not assigned
by ρ so that

⊕`
j=1 yj

i = xi. Define for the path π a term tπ that consists of all literals assigned along the
path. If tv is unsatisfied by ρ then the path is not chosen. 2

Denote by T (~y) the Boolean function computed by T . We may write

Pr[T (~y) 6= g~S,k(~y)] =
∑

v

Pr[T (~y) 6= g~S,k(~y)|πv is consistent] · Pr[πv is consistent], (2)

where the sum is taken over all paths πv in T . Let k′ = dkce. By the assumption of the theorem γ(~S) > k′.

Definition 17 A path πv in the decision tree gives value ε to variable xi iff all variables y1
i , ..., y

`
i are queried

on this path and been given values ε1, . . . , ε` so that ε = ε1 ⊕ · · · ⊕ ε`. A path is flexible if the following
three conditions hold:

• it does not give value 1 to any variable.

• its length is less than k′`.

• it outputs 0.

Lemma 18 Assume that Pr[T (~y) 6= g~S,k(~y)] < 1/m. For ~y chosen from D~S,k, with probability at least
1/4, a flexible path is consistent with ~y.

Proof: Note that according to D~S , x = 0n with probability 1/2 and the value of g~S,k(~y) is always 1 when
x = 0n. Thus by the assumption Pr[T (~y) 6= g~S,k(~y)] < 1/m with probability 1/2 − 1/m the path chosen
by T on input y outputs 0 and does not give 1 to any variable. Recall that we assumed that the size of T is
less than nc(1−11/`). By the union bound applied to Corollary 16 the probability that a path of length greater
or equal than k′` is consistent with ~y is less than

nc(1−11/`) · 2−k′`(1−10/`) < 1/5.

The above inequality holds by setting ` = blog n/kc, k′ = dkce, and c ≥ 3. Thus a flexible path is consistent
with a random input with probability 1/2− 1/m− 1/5. 2

Lemma 19 Let πv be a flexible path. Then

Pr[T (~y) 6= g~S,k(~y)|πv is consistent] ≥ 1/(m + 1).

Proof: Denote by Iv the index set of the variables to which πv gives a value, thus |Iv| < k′. Denote
by pj = Pr[πv is consistent|x = χSj ] for j = 1...m and p0 = Pr[πv is consistent|x = 0n]. It is clear
that for every j = 0..m either pj = 0 (in the case πv gives value to some xi inconsistent with χSj ) or
pj = 2−(|πv |−|Iv |). Indeed after the choice of x is fixed one has to specify |πv|−|Iv| independent y-variables
to determine whether πv is consistent. Denote q = 2−(|πv |−|Iv|). Denote by J the set of j > 0 for which
pj = q. Since γ(~S) ≥ k′ and |Iv| < k′ there exists some Sj for which Sj ∩ Iv = ∅, thus J is non-empty.
Since πv is flexible p0 = q as well. We write

Pr[T (~y) 6= g~S,k(~y)|πv is consistent] = Pr[g~S,k(~y) 6= 0|πv is consistent] = Pr[x 6= 0n|πv is consistent] =
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=
Pr[x 6= 0n ∧ πv is consistent]

Pr[πv is consistent]
=

(|J |/2m) · q
(|J |/2m) · q + 1/2 · q ≥ 1/(m + 1).

The lemma follows. 2

We are now ready to finish the proof of Theorem 14. Assume that Pr[T (~y) 6= g~S,k(~y)] < 1/m (otherwise
the theorem follows). By Lemma 18 we infer that a flexible path is consistent with the input with probability
at least 1/4. Consider the summation in (2).

∑
πv

Pr[T (~y) 6= g~S,k(~y)|πv is consistent] · Pr[πv is consistent] ≥

Pr[T (~y) 6= g~S,k(~y)|πv is consistent ∧ πv is flexible]Pr[~y is consistent with a flexible path] ≥
1

m + 1
· 1
4

> 1/(5m).

2

We will now prove Theorem 2 from the above two theorems. Assume for sake of contradiction that there
is a probabilistic algorithm A such that for all n, and for all functions c over n variables with minimal deci-
sion tree representation of size s, and all ε > 0, for all distributions D over inputs, A samples input/output
pairs of c from D, and with probability at least 3/4 (over the random bits of A and the samples from D),
outputs a decision tree T such that Prx∈D[T (x) = c(x)] ≥ 1− ε. Furthermore, assume that A runs in time
polynomial in n, s and 1/ε. In particular, assume that the runtime is bounded by (n · s · (1/ε))q.

From such an A, we will obtain a randomized algorithm B that approximates PMHS to within a factor
of d in polynomial time, for some d, and for k = O(log n). Let ~S be an instance of PMHS with parameters
n,m, k. Our algorithm B is as follows. Construct the partial function g~S,k as described earlier, and run the
learning algorithm A on g~S,k with respect to the distribution D~S,k, and with ε = 1/4 for (n2 · (1/ε))q =
(4n2)q time steps. The output should be a decision tree T . Now estimate the error of T by sampling
(polynomially many times) (again according to D~S,k) and comparing the value output by T versus the true

value of g~S,k on the samples. If the overall error is greater than 1/3, then reject the input ~S, and otherwise
(the error is smaller than 1/3), accept the input.

Fix d = 36q. By Theorem 13, if γ(~S) ≤ k, then there exists a decision tree of size n that computes g~S,k
on D~S,k with probability 1. Thus our simulation ofA is guaranteed to produce a tree T that ε-approximates
g~S,k with respect to D~S,k with probability at least 3/4, and thus with high probability our algorithm B will
accept.

On the other hand, if γ(~S) ≥ dk then by Theorem 14, any decision tree T that approximates g~S,k has

size at least nd(1−11/`) = nd/12 = n3q. Thus for sufficiently large n, since (4n2)q is less than n3q, this
implies that our simulation of algorithm A will fail to produce a decision tree T that approximates g~S,k, and
therefore our algorithm B will also reject with high probability.

Thus we have shown that if ~S has a minimal hitting set of size k, then B will accept with high probability,
and if ~S has no hitting set of size dk, then B will reject with high probability. Thus, the inapproximability
of PMHS implies hardness for learning decision trees, and we have completed the proof of Theorem 2.
Alekhnovich et al. [AKP04] prove the following theorem:

Theorem 20 ([AKP04]) For all c ≥ 0 there exists λ < 1 such that PMHS for k = O(log n) cannot be ap-
proximated to within a factor of c in randomized polynomial time unless SAT is computable in randomized
time 2nλ

.

Theorem 3 follows from the above theorem and Theorem 2.
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5 Hardness of Learning DNF and Intersections of Halfspaces

In this section we prove our main hardness result for DNF formulas, namely that an algorithm for learning
DNF in polynomial-time by ORs of threshold functions can be used to approximate the chromatic number
of a graph. We will actually prove the equivalent hardness result for CNF formulas and ANDs of thresholds
(intersections of halfspaces). It is easy to see that this will imply the intractability of properly learning both
DNF formulas and intersections of halfspaces. We begin by reviewing the reduction of Pitt and Valiant that
gives a simple way to reduce a coloring problem to proper learning of DNF [PV88].

5.1 The Reduction of Pitt and Valiant

Pitt and Valiant [PV88] gave a reduction from coloring k-colorable hypergraphs to learning k-term DNF
formulae (in their work this problem is referred to as k-NM-Colorability). We include this reduction for
completeness and also observe that, combined with a recent hardness result for coloring hypergraphs due
to Dinur et al. [DRS02], the reduction implies that 2-term DNF in not learnable by k-term DNF for any
constant k.

Recall that k-coloring a hypergraph means finding a mapping from the vertices to {1, . . . , k} such that
no edge has all of its vertices assigned the same integer.

Theorem 21 ([PV88]) Coloring a k-colorable hypergraph H = (V, E) using ` colors reduces to learning
k-term DNF formulae by outputting an `-term DNF formulae.

Proof: Let A be an algorithm for learning k-term DNF formulae by `-term DNF formulae and let H =
(V, E) be any k-colorable hypergraph on n vertices. For a vertex vi ∈ V let a(vi) be the a vector of length
n which is equal to 0 in position i and 1 elsewhere. For an edge e ∈ E let a(e) =

∧
v∈e a(v) (conjunction

is applied bitwise).
We construct a set of examples S as follows:

• Vertex examples: for each v ∈ V , (a(v), +).

• Edge examples: for each e ∈ E, (a(e),−).

We now claim that any k-coloring of H can be efficiently translated into a k-term DNF formula con-
sistent with the given examples and vice versa. Let χ be a k-coloring of H . For every color c ≤ k we
define

tc =
∧

χ(vi)6=c

xi ,

that is, tc is the conjunction of all the variables whose corresponding vertices are not colored in color c. We
set h = t1 ∨ t2 ∨ . . . ∨ tk. Clearly h is a k-term DNF formula and the translation is efficient. For every
vertex example a(vi), tχ(vi)(a(vi)) = 1 and hence h(a(vi)) = 1. For any edge example a(e), vertices in e
are colored in at least two different colors and hence every term tc will contain at least one variable xi such
that vi ∈ e. This means that h will not satisfy a(e).

Now let h = t1∨ t2∨ . . .∨ t` be a DNF expression consistent with the given examples. For every vertex
v, we define χ(v) = c if a(v) is satisfied by tc (if there are several terms that satisfy a(v) we choose the one
with the smallest c). Clearly this defines a mapping of vertices into ` colors. Take e ∈ E and assume that
all the vertices in it are colored in color c. That is, for each v ∈ e, tc(a(v)) = 1. This implies that

tc(a(e)) = tc(
∧
v∈e

a(v)) =
∧
v∈e

tc(a(v)) = 1
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contradicting the consistency with example (a(e),−). 2

This reduction can be used with the following hardness result due to Dinur et al. [DRS02]:

Theorem 22 ([DRS02]) It is NP-hard to k-color a 2-colorable 3-uniform hypergraph for any constant
k ≥ 0.

We therefore obtain the following hardness result.

Theorem 23 Assuming NP 6= RP there is no polynomial-time algorithm for learning 2-term DNF formulae
by k-term DNF formulae for any constant k.

To contrast this with known results for learning k-term DNF, note that a k-term DNF is learnable in time
O(nk) where the hypothesis is a CNF of size O(nk) [Val85].

5.2 The Distribution

We now present our reduction from coloring a graph to learning of CNF. We begin by defining a particular
distribution over a set of examples corresponding to taking specialized products of a graph. Given a graph
G = (V,E) we construct a distributionD over a set of examples as follows. We fix some positive integer pa-
rameter r, which might depend on n, the number of vertices. The examples are from {0, 1}n×r = ({0, 1}n)r.

Definition 24 Let G = (V,E) be a graph with n vertices and m edges. For a vertex v of G, let z(v) denote
the vector with a 1 in the ith position if v is the ith vertex of G and 0 everywhere else. For an edge e = (u, v)
of G let z(e) be the vector with a 1 in positions i and j if u is the ith vertex of G and v is the jth vertex of G
and 0 everywhere else.

For each vector (v1, v2, . . . , vr) ∈ V r we associate a negative example (z(v1), . . . , z(vr),−). There are
a total of |V r| = nr negative examples. For each choice of k1, k2, such that 1 ≤ k1 ≤ r, 1 ≤ k2 ≤ r,
k1 6= k2, e = (u,w) ∈ E and vi ∈ V for each i = 1, 2, . . . , r, i 6= k1, k2 we associate a positive example
(z(v1), . . . , z(e), z(vk1+1), . . . , 0, z(vk2+1), . . . , z(vr), +). Let S+ denote the positive examples and S−

denote the negative examples. Set S = S+ ∪ S−.
There are r ways to choose k1, r − 1 ways to choose k2, |E| ways to choose e, and |V |r−2 ways to

choose the rest of vi’s. Hence there is a total of r · (r − 1) · |E| · nr−2 positive examples.
Distribution D sets the probability of each negative example to be 1

2·nr and the probability of each
positive example is 1

2·r·(r−1)·|E|·nr−2 .

5.3 The Case of Small Chromatic Number

Here we prove that if the chromatic number χ(G) is small, then there exists a small CNF formula consistent
with the examples above. Set r = g(n)/γ = g/γ, for some function g such that g(n) ≤ n and constant
γ < 1. Hence γ = g/r. Then we have

Lemma 25 If χ(G) ≤ nγ = ng/r, then there is a CNF consistent with the examples with at most ng terms,
and hence of size ng.

Proof: Suppose V =
⋃χ

i=1 Ii, where Ii are independent sets. Such sets must exist by the definition
of χ. Define the CNF formula f(x1, x2, . . . , xn) =

∧χ
i=1

∨
j /∈Ii

xj . We then define a formula on r · n
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variables, which we claim is consistent with the learning problem: F ((x1
1, . . . , x

1
n), . . . , (xr

1, . . . , x
r
n)) =∨r

k=1 f(xk
1, . . . , x

k
n) =

∨r
k=1

∧χ
i=1

∨
j /∈Ii

xk
j .

Note that F above is not written as a CNF formula. It is, however, a disjunction of r CNF formulas, each
having at most χ(G) clauses. Hence expanding the formula yields a CNF formula with at most χ(G)r ≤
(nγ)r = ng terms. So F can be written as a CNF formula satisfying the conditions of the lemma, and it is
not to hard to check that it is consistent with all of the examples.

2

5.4 The Case of Large Chromatic Number

In this section we assume that χ(G) ≥ n1−ε, and we prove that no small AND-of-thresholds formula gives
a good approximation to the learning problem.

Theorem 26 Let G be a graph such that χ(G) ≥ n1−ε. Let F = ∧`
i=1hi where ` < 1

2χr

(
χ−1
log n

)r
. Then F

has error at least 1
n2g+4 with respect to D.

We will need the following covering lemma which was first proved by Linial and Vazirani [LV89] and
is a special case of a result due to Feige on randomized graph products (Corollary 2.9 of [Fei95]):

Lemma 27 [LV89] One needs at least
(

χ−1
ln n

)r
products of the form I1 × I2 × . . .× Ir, where the Ii’s are

independent sets, to cover V r = V × V × . . .× V .

Let a product in the above form be called a product of independent sets. At a high level, we will argue
that any hk ∈ F correctly classifies very few negative examples that lie outside a particular product of
independent sets. Then using the above lemma, it will follow that we need many hk’s to cover (correctly
classify) all negative examples. We now proceed to the details.

Fix a particular hk ∈ F . Let hk =
∑r

i=1

∑n
j=1 αi

jx
i
j ≥ β. For each i ≤ r, the i-coefficients in h

are the coefficients of the form αi
j , j ≤ n. For each i ≤ r, let Ii be the set of all j ≤ n such that there

is no edge (k, j) ∈ E such that αi
k is less than αi

j . (That is, we order all i-coefficients in nondecreasing
order, and take the coefficients in order that are independent). Note that Ii is an independent set of G. Let
Sk

1 = V ×I2× . . .×Ir, Sk
2 = I1×V ×I3× . . .×Ir, and so forth. Let Sk = ∪r

i=1S
k
i . The following lemma

shows that hk either misclassifies many positive examples, or misclassifies almost all negative examples
outside of Sk.

Lemma 28 Let {hk}`
k=1 be a family of halfspaces, and Sk as above. Let N denote the number of negative

examples outside of ∪`
k=1S

k that ∧hk classifies correctly. Then the number of positive examples that ∧hk

misclassifies is at least N/2n.

Proof: Fix hk and I1, I2, . . . , Ir as above. Let α = z(j1), . . . , z(jr) be a negative example such that α is
not in Sk, and hk(α) = 0. Thus hk(α) = α1

j1
+ α2

j2
+ . . . + αr

jr
< β. Since α is not in Sk, there exist two

ji’s, say j1 and j2 such that j1 6∈ I1 and j2 6∈ I2. Since j1 is not in I1, there is some vertex k1 in I1 such
that the edge (j1, k1) is present in E1 and similarly there is a vertex k2 in I2 such that the edge (j2, k2) is in
E2. By the way we chose I1 and I2, it follows that α1

k1
≤ α1

j1
and α2

k2
≤ α2

j2
. Either (a) α1

j1
≤ α2

j2
, or (b)

α2
j2

< α1
j1

. If (a) holds, then α1
k1

+ α1
j1

+ α3
j3

+ . . . + αr
jr

< β. But this corresponds to the positive example
α′ = (z(j1, k1), 0, z(j3), . . . , z(jr)) and thus hk (and ∧hk) misclassifies α′. Similarly if (b) holds, then hk

(and ∧hk) misclassifies the positive example α′ = (0, z(j2, k2), z(j3), . . . , z(jr)). Thus we have a mapping
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from the set of all correctly classified negative examples outside of ∪`
k=1S

k to incorrectly classified positive
examples. Since each positive example is mapped onto by at most 2n negative examples (each misclassified
positive example can be obtained from starting with a negative example that falls into either case (a) or
case(b)), it follows that the number of positive examples misclassified by ∧hk is at least N/2n. 2

Recall that F is the conjunction of ` threshold formulas, h1, . . . , h`. For each hk, let Sk be the associated
set of cross products. Let the negative examples that hk correctly classifies be denoted by Ink ∪Outk, where
Ink are those correctly classified negative examples in Sk, and Outk are the remaining correctly classified
negative examples.

Lemma 29 Let Sk, k ≤ ` be defined as above. If ` ≤ 1
2χr ·

(
χ−1
ln n

)r
then nr − | ∪l

k=1 Sk| ≥ 1
2 ·

(
χ−1
ln n

)r
.

Proof: If this were not the case, we would have a collection of ` ·χ ·r ≤ 1
2 ·

(
χ−1
ln n

)r
products of independent

sets which cover all but m < 1
2 ·

(
χ−1
ln n

)r
points of V r. (To see this, replace the cross product I1× . . . Ii−1×

V × . . . × Ii+1 × . . . × Ir by χ cross products I1 × . . . Ii−1 × Jk × Ii+1 × . . . × . . . × Ir, where k ≤ χ,
and J1, J2, . . . Jχ is a partition of the vertices in G into χ independent sets.) Then by adding m singletons

(which are trivially products of independent sets) we obtain a cover of V r by lχr + m <
(

χ−1
ln n

)r
products

of independent sets, which contradicts the above covering lemma (Lemma 27). 2

We can now analyze the overall error with respect to D. Let F = ∧`
k=1hk, where each hk is a threshold

formula, and l < 1
2χr

(
χ−1
ln n

)r

Let R = 1
4 ·

(
χ−1
ln n

)r
. There are two cases to consider. The first case is when | ∪`

k=1 Outk| ≥ R. Then

by Lemma 28, the number of positive examples that F misclassifies is at least R
2n . Thus the probability of

error with respect to D is at least R
4n·r·(r−1)·|E|·nr−2 which, for sufficiently large n, is at least:

R/nr+4 =
1
4 ·

(
χ−1
ln n

)r

nr+4
≥

1
4 ·

(
n1−g/r−1

ln n

)r

nr+4

>

(
n1−2g/r

)r

nr+4
= n−2g−4 =

1
n2g+4

.

In the second case, | ∪`
k=1 Outk| < R. But then by Lemma 29, the number of negative examples

misclassified is at least 1
2 ·

(
χ−1
ln n

)r
− R which is equal to R. Thus the probability of an error with respect

to D is at least R
2nr , which again is at least 1

n2g+4 for sufficiently large n.
Finally, we have reduced the problem of approximating χ(G) to learning CNF:

Theorem 30 Suppose that CNF is efficiently learnable by ANDs-of-thresholds in time O(nkg(n)/2 ·sk ·(1
ε )

k),
where k > 1, and 1 ≤ g(n) ≤ n/14k (recall s is the size of the CNF). Then there exists a randomized algo-
rithm for approximating the chromatic number of a graph within a factor of n1−1/14k in time O(n14kg(n)+2).
Moreover, the algorithm will always give a valid answer for χ ≥ n1−1/14k.

Proof: Set ε = 1
n2g+4 and r = 14kg. Let G be a graph and let D be the distribution induced from G as

described previously. Run the learning algorithm with respect to distribution D. If it does not terminate
after n9kg steps output “χ ≥ n1−1/14k”. Otherwise, let h be the hypothesis the algorithm outputs. Calculate
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the error εh of h with respect to the distribution D. If εh < 1
n2g+4 output “χ ≤ n1/14k”, otherwise output

“χ ≥ n1−1/14k”. We claim that this algorithm works with probability at least 3/4 for sufficiently large n in
approximating χ ≤ n1/14k and works perfectly for χ ≥ n1−1/14k.

If χ ≤ n1/14k, by Lemma 25, s ≤ ng. The number of variables in the underlying learning problem is
r ·n < n2. Hence the running time with probability≥ 3/4 is at most O(n2·kg/2ng·kn(2g+4)k) ≤ O(n8kg) <
n9kg for sufficiently large n, and the output is supposed to have an error < ε = 1

n2g+4 . Hence the algorithm
outputs “χ ≤ n1/14k” with probability at least 3/4 in this case.

If χ ≥ n1−1/14k, by Lemma 26 the output of the algorithm must contain at least 1
2χr

(
χ−1
ln n

)r
terms in

order to have an error < ε = 1
n2g+4 . In this case the running time of the algorithm (for n sufficiently large)

is at least:

1
2χr

(
χ− 1
ln n

)r

≥ 1
n3

(
n1−1/14k − 1

ln n

)r

≥ 1
n3

(
n1−1/13k

)14kg

>
1
n3

n12kg ≥ n9kg.

Hence if the algorithm terminates in n9kg steps, its error will be bigger than ε, and the algorithm outputs
“χ ≥ n1−1/14k” with probability 1 in this case. 2

Remark 31 By negating the CNFs and the ANDs-of-thresholds in Theorem 30, we obtain the following:
Suppose that DNF is efficiently learnable by ORs-of-thresholds in time O(nkg(n)/2 · sk · (1

ε )
k), where

k > 1, and 1 ≤ g(n) ≤ n/14k. Then there exists a randomized algorithm for approximating the chromatic
number of a graph within a factor of n1−1/14k in time O(n14kg(n)+2). Moreover, the algorithm will always
give a valid answer for χ ≥ n1−1/14k.

We will require the following hardness result due to Feige and Kilian [FK96]:

Theorem 32 [FK96] For any constant λ > 0, there exists a polynomial-time randomized reduction map-
ping instances f of SAT of length n to graphs G with N = poly(n) vertices with the property that if f
is satisfiable then χ(G) ≤ O(Nλ) and if f is unsatisfiable then χ(G) ≥ Ω(N1−λ). The reduction has
zero-sided error.

An immediate corollary is that approximating the chromatic number is hard:

Corollary 33 [FK96] Let λ > 0 be a constant. Assume there exists an algorithm which approximates the
chromatic number of a graph with n vertices within a factor of n1−λ in RPTIME(t(n)) (with zero error if
χ ≥ n1−λ). Then NP ⊆ RPTIME(t(na)) for some constant a ≥ 1.

Now we can combine Theorem 30 and Corollary 33 to prove Theorem 4.
Proof:(of Theorem 4) If DNF formulas are learnable by ORs-of-thresholds in polynomial-time, we show
how to approximate the chromatic number of a graph in polynomial-time to within a factor of nλ for some
small constant λ > 0. Let G be a graph on n vertices. From Remark 31 setting g = 1, we can approximate
χ(G) within a factor of n1−1/14k in time O(n14k+2) where k is a constant, with zero error for χ ≥ n1−1/14k.
Hence, by Corollary 33, NP ⊆ RPTIME(nO(1)) = RP. 2
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From the proof of Theorem 30 we can see that it is hard to learn even nλ-term DNF by nb-term OR-of-
thresholds in time nb for any constant b ≥ 0. We can, under a stronger hardness assumption, prove stronger
hardness results for learning superpolynomial size DNF formulas (i.e. if we do not restrict our concept class
to be polynomial-size DNF formulas):

Corollary 34 Suppose that SAT /∈ RPTIME(O(nnβ
)) for some β. Then for any k > 0 there is α > 0 such

that DNF formulas are not properly learnable in time O(nnα · sk · (1
ε )

k).

Notice that if we assume SAT /∈ RPTIME(2nβ
) for some β and substitute k = 1 in Corollary 34 then we

can conclude that DNF formulas are not properly learnable in time O(nnα · s · 1
ε ) for some α < 1. Theorem

1 states, however, that DNF formula are properly learnable in time 2O((n log s)1/2 log n)/ε, so our lower bound
is fairly tight.

6 Intersections of Two Halfspaces

In this section we show that it is hard to learn the intersection of two halfspaces by the intersection of any
constant number of halfspaces. This result may be especially interesting in light of the fact that it is not
known how to learn (even non-properly) the intersection of two n-dimensional halfspaces in time less than
2O(n).

The main idea is to apply recent hardness results on the hardness of hypergraph coloring. Recently,
several researchers [GHS00, Kho02, DRS02] have shown that it is hard to color uniform hypergraphs, i.e.,
hypergraphs where each hyperedge is of equal size.

We start by reducing the problem of coloring a 3-uniform hypergraph to a consistency problem for
intersections of halfspaces:

Theorem 35 The problem of `-coloring a k-colorable hypergraph on n vertices reduces to finding an inter-
section of ` halfspaces over n variables consistent with examples labelled by an intersection of k halfspaces.

Proof: Let H = (V, E) be a k-colorable hypergraph with n vertices. We construct a set of examples S
classified by the intersection of k halfspaces such that any intersection of ` halfspaces consistent with S can
be used to `-color H (the reduction is an extension of the reduction by Blum and Rivest [BR92]).

Denote the vertices of H by v1, v2, . . . , vn. For a vertex vi ∈ V , let a(vi) denote the vector of length
n with a 1 in the ith position and 0 everywhere else. For an edge e ⊆ V of G let a(e) be the vector equal
to

∑
v∈e a(v) (that is, the characteristic vector for set e). Let 0n denote the all zeroes vector of length n.

Create the following set S of examples

• The example (0n, +).

• For every vertex v ∈ V , the example (a(v),−).

• For every edge e ∈ E, the example (a(e), +).

Assume H is colorable by k colors according to the function χ. We construct an intersection of k
halfspaces consistent with S. Let hi = sign(wi · x− θi) where θi = −1/2 and wi = (wi,1, . . . , wi,n) such
that wi,j equals −1 if χ(vj) = i and n otherwise. Set h = ∧k

i=1hi.
Checking that h1 ∧ h2, . . . ,∧hk is consistent with S is straightforward; the example (0n, +) is satisfied

and each (a(v),−) example is consistent with the intersection. Finally given an edge e each (a(e), +) is
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satisfied by each hi since there exist two vertices in e which are colored in different colors and hence at least
one of two vertices will contribute n to the weighted sum making the total positive.

For the other direction, assume there exists an intersection of ` halfspaces h = h1 ∧ · · · ∧ h` consistent
with the examples in S. Construct a coloring for H as follows. Let χ(v) = t where t is the first halfspace ht

such that ht(a(v)) is negative. This assigns a color to each vertex. Now let e ∈ E. If there exists a color c
and edge e such that ∀v ∈ e, χ(v) = c then for all v ∈ e, hc(a(v)) = 0. Since h(0n) is positive, it implies
that hc(0n) is positive, and hence its threshold θc is negative. But for all i such that vi ∈ e, hc(a(vi)) = 0
and thus wc,i < θc. This implies

∑
vi∈e wc,i < θc and therefore hc(a(e)) = 0 contradicting the consistency

with S. 2

Applying Theorem 35 and Theorem 22 we obtain Theorem 5, our main hardness result for this section.
Proof:(of Theorem 5) Assume there exists a polynomial time algorithm for learning the intersection of
two halfspaces which outputs a hypothesis equal to an intersection of k halfspaces. Given a hypergraph
H construct a set of examples S as above. Consider a distribution D which is uniform over this set of
examples. Setting the error parameter ε = 1/(|S| + 1), run the algorithm to obtain with probability 3/4 a
hypothesis h equal to the intersection of k halfspaces. The algorithm will run in time polynomial in n and
1/ε = |V | + |E| + 2, that is, will be polynomial in the size of H . Since ε < 1/|S|, h must be consistent
with S. Hence from Theorem 35 we can reconstruct a coloring for H . 2

Dinur et al. [DRS02] also give the following hardness result under a slightly stronger assumption:

Theorem 36 ([DRS02]) If NP 6⊆ DTIME(2logO(1) n) then there is no polynomial time algorithm for color-
ing a 2-colorable 3-uniform hypergraph using O((log log n)1/3) colors.

We obtain a corresponding hardness result:

Corollary 37 There is no efficient algorithm for learning intersections of two halfspaces by intersections of
O((log log n)1/3) halfspaces unless NP ⊆ RTIME(2logO(1) n).

We can also prove a hardness result for learning two-node neural networks by neural networks with a
constant number of origin-centered hidden nodes:

Theorem 38 Coloring a k-colorable hypergraph with 2` colors reduces to the problem of finding any
function of ` origin-centered halfspaces consistent with a data set labelled by the intersection of k origin-
centered halfspaces.

Proof: Let H = (V, E) and use the same reduction as in the proof of Theorem 35 to obtain a set of examples
S without the 0n example. We first note that if we define h = ∧`

i=1hi where hi’s are defined as before but
with thresholds θi = 0 we will get an intersection of k origin-centered halfspaces consistent with S.

For the other direction let f be a Boolean function of ` origin-centered halfspaces h1, . . . , h` consistent
with S. Put 2` colors in correspondence with every subset of ` halfspaces. Color v the color corresponding
to which subset of the ` halfspaces are negative on input a(v). Assume e is a monochromatic edge. Then
each v ∈ e is set negative by the same subset of halfspaces. That is for every j ≤ ` and vi1 , vi2 ∈ e,
hj(a(vi1)) = hj(a(vi2)). hj is zero centered and hence sign(wj,i1) = sign(wj,i2). This implies that for
every v ∈ e,

hj(a(e)) = sign(
∑
vi∈e

wj,i) = hj(a(v))

and thus f(a(e)) = f(a(v)) which contradicts the consistency with S. 2

Now we can apply the hardness result due to Dinur et al. [DRS02]. For any learning algorithm outputting
some representation of a function of ` halfspaces in polynomial time we have the following:
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Corollary 39 It is NP-hard to learn three-node neural networks by outputting a neural network with a
constant number of hidden, origin-centered nodes.
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