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Abstract

We investigate computational and mechanism design aspects of optimal scarce resource al-
location, where the primary rationing mechanism is through waiting times. Specifically we
consider the problem of allocating medical treatments to a population of patients. Each patient
has demand for exactly one unit of treatment, and can choose to be treated in one of k hospitals,
Hy, ..., Hg. Different hospitals have different costs, which are fully paid by a third party —the
“payer”— and do not accrue to the patients. The payer has a fixed budget B and can only
cover a limited number of treatments in the more expensive hospitals. Access to over-demanded
hospitals is rationed through waiting times: each hospital H; will have waiting time w;. In equi-
librium, each patient will choose his most preferred hospital given his intrinsic preferences and
the waiting times. The payer thus computes the waiting times and the number of treatments
authorized for each hospital, so that in equilibrium the budget constraint is satisfied and the
social welfare is maximized.

We show that even if the patients’ preferences are known to the payer, the task of optimizing
social welfare in equilibrium subject to the budget constraint is NP-hard. We also show that,
with constant number of hospitals, if the budget constraint can be relaxed from B to (1+4€)B for
an arbitrarily small constant €, then the original optimum under budget B can be approximated
very efficiently.

We further study the endogenous emergence of waiting time from the dynamics between
hospitals and patients. When the patients arrive uniformly along time and when they have
generic types, we show that the payer does not need to explicitly enforce the optimal waiting
times. Rather, each hospital’s waiting time simply changes according to the demand there, and
the dynamics will always converge to the desired waiting times in finite time.

We then investigate the optimization problem over a much larger class of mechanisms that
contains the equilibrium ones as special cases. In the setting with two hospitals, we show
that under a natural assumption on the patients’ preference profiles, optimal welfare is in fact
attained by the randomized assignment mechanism, which allocates patients to the hospitals at
random subject to the budget constraint, but avoids waiting times.

Finally, we discuss potential policy implications of our results, as well as follow-up directions
and open problems.
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1 Introduction

In this paper we study computation and mechanism design issues in the context of optimal health-
care provision. Specifically, we consider the setting where waiting times, and not payments, are
used to allocate scarce care resources among patients. Waiting times in healthcare provision is an
important topic of public debate worldwide. For example, it has a central role in the ongoing debate
surrounding the Patient Protection and Affordable Care Act (“Obamacare”) in the United States.
In a large number of countries with public health coverage financing, including Australia, Canada,
Spain, and the United Kingdom, procedures such as elective surgery are rationed by waiting [26, 11].
While in the public perception waiting times are often associated with poor resource management,
in the economics literature it is well-understood that queues of consumers will form whenever a good
is priced below the good’s perceived value, as long as supply is scarce [4, 21, 16] — independently
of the ultimate distribution mechanism. In particular, waiting times in this context are dictated
by economic incentive constraints and not by stochastic fluctuations as in classical queuing theory.
Therefore, whenever “correct” monetary pricing is impossible or undesirable, waiting times should
be incorporated explicitly into the allocation models.

We focus on providing a single non-urgent healthcare service (such as a particular surgery)
to a population of patients, and define the PROVISION-AFTER-WAIT problem for this scenario.
In our model, a population of patients arrives in each time unit (say, 1 month), seeking for the
desired service at some hospital. There are k& hospitals providing the service under different costs.
The patients have different preferences about the hospitals, and the composition of the patient
population in each time unit is the same. Each patient needs to be served exactly once. The
service is fully financed by a third party —a “payer”, e.g., the government or an insurer. Therefore
the patients’ choices of hospitals are not affected by the (monetary) costs. But the payer has a fixed
budget B that he is willing to spend on providing the service to the entire patient population in
each time unit, and it is unaffordable to let every patient go to his favorite hospital (otherwise the
provision problem is already solved at the very beginning). Without loss of generality, we assume
that the payer has enough budget to treat all patients in the cheapest hospital. This can always be
achieved by adding a dummy hospital which has cost 0 and is the least preferred by all patients,
representing the option of not getting any service.

The payer rations the patients’ demand subject to his budget by setting for each hospital H; a
waiting time w;, measured using the same time unit. Every patient going to H; has to wait for w;
before he can be served. There is no co-pays, and thus the waiting time is the only cost directly
incurred by the patients.! We assume that waiting times are known to the patients before they
make decisions.? Each patient P; has value v;; for hospital H;, representing his utility for being
treated in H; right away. Similar to [10], we assume that the patients have quasi-linear utilities
with respect to waiting time, that is, patient P;’s utility for being treated at H; with waiting time
w; 18 uj =S v;j — w;. The primary reason for this choice is that it is the most natural way to
ensure that patients are treated equally by welfare-optimizing mechanisms. Since, as mechanism
designers, we do not have full access to the u;;’s of individual patients but can observe waiting
times, our welfare-loss due to waiting will just be the sum of all the waiting times in the system?.

! Adding co-pays to the model would be interesting follow-up work, but the space of possible models is far vaster
with co-pays. Issues in introducing co-pays include dealing with different people having different time/money trade-
offs, and defining the patients’ utility properly (with the usual ethical question: do people with higher utility for
money have lower utility for health, a.k.a. “should poor people count for less”?). In this paper we avoid these
problems, since time is fair to everybody and our patients utility is measured in waiting-time equivalents.

2For example, the patients can observe the length of the lines before deciding which one to join, or they can be
informed explicitly when trying to make an appointment.

3We can relax this assumption to allow utility functions of the form u;; = v;; — U(w;), where U(w) is a function
(common to all patients) that maps waiting time w to utility loss caused by waiting w time units.



The patients are unrestricted in their choices of hospitals. Thus, at equilibrium, a patient is
assigned to a hospital that maximizes his utility given the waiting times. The social welfare of an
equilibrium is defined to be the total utility of the patients in each time unit. The government’s
goal when solving the PROVISION-AFTER- WAIT problem is to find the optimal equilibrium waiting
times and assignments of patients to hospitals that maximize social welfare, subject to the budget
constraint.

Our model is formally defined in Section 2. Below we would like to emphasize three main
features of it.

Two non-interchangeable “currencies”. Firstly, as money is still involved, the setting leads
to two non-interchangeable “currencies” of money and waiting time. This complicates the design
problem, both conceptually and computationally. As we shall see from the first part of our main
results, even if money and waiting time are kept separate and only the latter affects the demand,
the fact that they cannot be “traded” for each other (thus reducing the setting to one currency)
makes the problem much more difficult.

Indirect control of waiting times. Secondly, although waiting time is modeled as a parameter
whose optimal value is decided by the government, there is no need for the government to enforce
it explicitly. Instead, as we shall show in the second part of our main results, the government can
simply decide the amount of money it is willing to pay to each hospital in each time unit, and the
desired waiting times at different hospitals will emerge endogenously among the hospitals and the
patients. Indeed, the role of waiting time in our model is similar to that of price in markets. In a
market, it is the price that ultimately drives consumers to different purchases, but the producers
do not get to dictate it. They can only control the price indirectly by adjusting their supply levels,
and the “correct” price will emerge endogenously from the market. This analogy makes it more
reasonable to adopt our model in reality: it is more natural for the government to control the
amount of money it pays and tell a hospital “I’ll only pay you $5,000 each month for this service”,
than for it to control waiting times and tell a hospital “you have to make each patient using this
service wait for 3 months”.

Welfare-burning effect of waiting times. Finally, unlike monetary transfers, nobody benefits
from one’s waiting time, and thus waiting times represent a net loss in welfare. That is why in our
model the social welfare is defined as the total utility of the patients —that is, total value minus
total waiting time—, differently from auctions where social welfare is the total value of the buyers.
The welfare-burning phenomenon is common in the study of resource allocation with waiting times,
and is similar to the money-burning mechanisms [14], subject to the important caveat that time
burnt is not interchangeable with money.

Given the general welfare-burning effect of waiting times, it is very natural to ask whether they
can be avoided or reduced via a different allocation mechanism altogether. If monetary payments
are not allowed, and patients are free to choose their hospitals, then the (deterministic) equilibrium
solution of the PROVISION-AFTER-WAIT problem is the only one possible. What if the payer has
sufficient control over the patients that it can tell them where to receive their treatment, or otherwise
restrict their options*? The simplest such mechanism would be a randomized assignment of patients
to available slots, with the probabilities decided by the budget constraint. In such assignment, we
benefit from zero waiting time. On the downside, we incur an efficiency loss: patients may not
end up in the hospitals they prefer. How does this randomized assignment mechanism compare to
the mechanism where patients are given a free choice and waiting times are used as a rationing

1Possible “soft” mechanisms for doing this are discussed below.



tool? The answer to this question depends on the preference profiles of the patients. Informally
speaking, if patients have strong and diverse preferences on where to be treated, then the free-
choice equilibrium mechanism is better, since efficiency gains due to better allocation offset the
inefficiency caused by waiting. At the other extreme, if all patients have similar preferences, then
no efficiencies are to be gained from patients’ choice, and randomized assignment mechanisms are
superior. We further investigate this question in the case of two hospitals, in the third part of our
main results.

1.1 Main results
Finding optimal equilibrium waiting times and assignments

We first study the computation issues in our model, assuming that the government is fully informed
about the hospitals’ costs and the patients’ valuations. The following theorem shows that the
PROVISION-AFTER-WAIT problem is hard to solve in general.

THEOREM 1. Finding optimal equilibrium waiting times and assignments is NP-hard.

The hardness result motivates one to ask whether one can efficiently approximate the welfare
of the optimal solution. Interestingly, we show that if we relax the budget constraint to (1 + €¢)B
with an arbitrarily small constant e, we can achieve at least as much welfare as the best B-budget
equilibrium solution, using an algorithm whose running time depends on (logm)¥, where m is the
number of patients in one time unit and k is, as already mentioned, the number of hospitals.

THEOREM 2. (rephrased) There is an algorithm that runs in time O ((log; . m)* - m*) and outputs
an equilibrium solution such that, the total cost is at most (14 €)B and the social welfare is at least
as high as that of the optimal equilibrium solution with budget B.

These results are formally presented in Sections 3 and 4. It remains an interesting open problem
whether there is a welfare approximation algorithm that does not exceed the budget. Also, it is
unknown whether there is an approximation algorithm that is polynomial in k.

Letting waiting times emerge endogenously

Next we show how the desired waiting times and the corresponding optimal social welfare can
emerge endogenously as the patients arrive and choose their favorite hospitals in dynamics. Say the
government has decided how to spend its budget for the desired service, by using our approximation
algorithm above or by using other methods. The way of spending the budget can be enforced by
setting the quota for each hospital, namely, how many patients the government is willing to pay in
one time unit (of course, the total quota must be at least the number of patients).

It is natural to assume that the hospitals want to keep waiting times as low as possible, and
at time 0 all hospitals have waiting time 0. When the patients arrive along time, they choose
which hospital to go according to their own valuations and the current waiting times. If a hospital
gets over-demanded, namely, the number of patients going there exceeds the quota paid by the
government, then a line has to form and this hospital’s waiting time increases accordingly. If the
waiting time becomes too high due to previous demand, patients arriving later may choose not to go
there and the hospital may become under-demanded, causing its waiting time to decrease. As there
may be many waiting time vectors of the hospitals that correspond to equilibrium assignment given
the quotas, it is not immediately clear which one the dynamics will converge to (if it converges),
and how much social welfare the government can generate from the dynamics.

Assuming the patients’ valuations are in a generic position as properly defined in Section 5,
our following theorem characterize the structure of the optimal equilibrium given any quotas of the
hospitals.



THEOREM 3. (rephrased) For any quotas of the hospitals, there is a unique optimal equilibrium
mazimizing social welfare. It has the minimum waiting time vector among all equilibria, and any
hospital whose quota is not fully used has waiting time 0.

Accordingly, it is reasonable to hope that the optimal equilibrium is the one implemented by
the dynamics. Our following theorem shows this is indeed the case.

THEOREM 5.2. (rephrased) At any point of time, the waiting time of any hospital will never exceed
its waiting time in the optimal equilibrium, and thus the social welfare generated in any time unit
will be at least the optimal social welfare given the quotas. The dynamics will converge once the
optimal equilibrium is reached, and it will not converge to anything else.

These results are formally presented in Section 5. It would be interesting to show that the
dynamics will always converge. But as we just pointed out, the optimal social welfare given the
quotas will be generated whether the dynamics converges or not.

When is the randomized assignment optimal?

Finally, we turn our attention to the enlarged setting where we are not limited to mechanisms that
produce equilibrium solutions. The two “extreme” mechanisms are the equilibrium mechanism
discussed above that gives the patients free choices, and the randomized assignment mechanism
that assigns patients at random to available slots and does not give them any choice. In addition,
there is an infinite number of various lotteries in-between these extremes. In a lottery, the patients
are presented with a set of distributions over hospitals, with an expected waiting time associated
with each distribution. Instead of free choices among all possible (distributions of) hospitals, the
patients can only choose from the available ones in the lottery, and they make choices to maximize
their expected utilities.

Intuitively, if there are no extreme variations among the patients’ preferences, the randomized
assignment should outperform other mechanisms, since it avoids the deadweight loss of waiting
times. We give further evidence suggesting that randomized assignment may be superior in terms
of social welfare, by analyzing the case when there are two hospitals.

Let the hospitals be Hy and H; with costs ¢y and c¢; respectively, such that ¢y < ¢;. We assume
without loss of generality that patients going to hospital Hy faces no waiting time®. Thus patients
who prefer Hy over H; will always choose Hy. We can therefore exclude them from consideration,
and focus on patients who prefer Hy over Hy.

We assume a continuous population of such patients, indexed by the [0, 1] interval. Each patient
x is associated with a value v(zx), representing how much time x is willing to wait to be treated
in H; instead of Hy. That is, v(x) is the difference between z’s utility for being treated at H;
immediately and his utility for being treated at Hy immediately. We rename the patients so that
v(x) is a non-decreasing function on [0,1]. Thus, for example, v(0.5) represents the median time
that patients preferring H; are willing to wait to be treated there. We prove the following theorem
in Section 6.

THEOREM 6. (rephrased) If v(z) is concave, then no lottery can generate more social welfare than
the randomized assignment.

Here a lottery is a set of options, each consisting of a probability of being treated in H; and the
corresponding waiting time there. This shows that for a broad class of preferences, the randomized
assignment is welfare-maximizing even when waiting times are an option available to the payer.
As a special case, this shows that randomized assignment has better welfare than the optimal

SIndeed, positive waiting time at Hy will give patients incentives to go to the more expensive hospital Hi, and
thus increase the total cost while burning more social welfare.



equilibrium solution. It would be interesting to find an analogous sufficient condition for three or
more hospitals.

1.2 Discussion and open problems

In this paper we consider two separate issues. The first one is how to optimally allocate treatments
in equilibrium, when the payer faces budget constraints and waiting times are used to ration
patients’ behavior. The second one is whether it may be beneficial to do away with the equilibrium
requirements by limiting available options of the patients.

While finding the optimal equilibrium solution in the PROVISION-AFTER- WAIT problem is NP-
hard, our approximation result suggests that this problem might not be as difficult in practice. In
many cases the number of treatment facilities involved is fairly small, making running time expo-
nential in k feasible. Moreover, in some cases the “hospitals” are actually treatment alternatives
that vary in costs (e.g. physiotherapy is cheaper than knee replacement), in which case k may be
as low as 2. For the general case where k can be big, it would be interesting to explore restrictions
on the patients’ valuations that would make the exact optimization efficient, such as when the
valuations are highly correlated so that the valuation matrix (v;;) has low rank. There are many
questions one can ask about the general complexity of the PROVISION-AFTER-WAIT problem, for
example, whether it is strongly NP-hard, whether it has an FPTAS, whether it is fixed-parameter
tractable in the number of hospitals, etc.

As we shall show, equilibrium assignment with waiting times has a strong connection to unit-
demand auctions [7, 1], and such a connection leads to our approximation result. One natural
question is whether this connection can be used in dynamic setting to show that the system will
remain in the patient-optimal equilibrium as the population’s preferences slowly shift over time.
A related question is whether it is possible to approximate optimal welfare in equilibrium if the
payer only knows the approximate distribution of patient types in the population. Another related
question is whether one can design mechanisms for our setting such that the patients have incentives
to truthfully reveal their valuations, so that the government does not need to know these valuations
to begin with.

The study of waiting times as a rationing mechanism is closely related to the study of ordeal
mechanisms [2], where other tools (e.g. excessive bureaucracy) are used in place of waiting times
to reduce demand to the supply level®. These may be used in settings where queues are not an
option such as school choice. Developing computational mechanism design tools for these settings
is a very interesting direction of study.

Our third result looks beyond equilibrium solutions. We give evidence that equilibrium solutions
are in fact dominated in many cases. One immediate implication is that giving the payer power
to restrict choice may in fact improve overall welfare. While this is perhaps not surprising, choice
restriction may be very difficult or politically infeasible to implement in practice, due to the fact
that patients have an inherent preference for choice [23].

There are important indirect ways, however, in which a payer (especially a government payer)
may influence choice. One of them is through release (or non-release) of quality of care information
about providers. The topic of quality of care information is important both in theory and in practice.
In the United States, for example, Medicare has started to publicly release hospital performance
information as part of its pay-for-performance push [17]. The effect performance reporting has on
provider incentives has been the subject of much study and discussion [24, 20, 13]. It has even been
suggested that it would be possible to manipulate reported quality metrics in a way that would

SNote that in medicine not all ordeals are necessarily dead-weight loss. For example, the famous (and highly-
demanded) Shouldice hernia clinic in Ontario, Canada requires its patients to lose weight before being admitted for
a surgery [15]. Most clinics do not place such a requirement.



force the provider to exert first-best quality and cost effort [22]. To the best of our knowledge,
there has been no work on the effect of quality reporting on patient incentives.”

Inasmuch as quality information influences patients’ choices, it may actually cause harm in the
context of allocation using waiting times. Consider a scenario where there are two hospitals, a
good one H, and a bad one Hy. All patients prefer the good hospital over the bad by the same
amount, but they do not know which is which. As a result, both hospitals will receive half the
patients, and waiting time will be zero. If the payer reveals that H, is the good hospital through its
quality-of-care disclosure, then all patients will prefer H, over H}, by the same amount A. Unless
H, has enough slots for everybody, the waiting time there will have to be A, which completely
burns social welfare and makes all patients worse-off than when they were ignorant. In effect, before
the quality disclosure, uninformed patients implemented the randomized assignment — through free
choice. Once the quality information was disclosed, the game moved to the equilibrium solution.

Our results and the discussion above suggest that in some cases a population of more informed
patients will experience higher waiting times and lower overall utility than uninformed patients.
This suggests an unfortunate potential side effect of information disclosure in cases where allocation
is done by waiting times. Such a side effect deserves further study since, at the moment, quality
information release is regarded as an absolute good. Understanding the optimal structure of infor-
mation released to the patients in terms of overall welfare (as well as provider-side incentives) is an
important and interesting direction of study.

1.3 Additional related work

The role of waiting time can be studied either from the supply side, namely, how waiting times
interact with the hospitals’ incentives, or from the demand side, namely, how they interact with
the patients’ incentives. In [26] the authors give a thorough analysis of existing policies on reducing
waiting times by affecting the incentives of either side. Our model focuses on the demand side, and
below we discuss some other works that also focus on this side.

The authors of [11] study quality and waiting times with the existence of ex post moral hazard.
They assume that the patients are ex ante identical, and that the treatment has objective quality
levels with which both the valuations and the costs are monotonically increasing. But notice that if
the patients are identical, rationing by waiting times is bounded to burn a lot of social welfare since
at equilibrium every patient has to be treated in the same way —as elaborated in our results. In
our model the patients’ valuations can be arbitrarily associated with different hospitals, reflecting
subjective views they may have, and the hospitals’ costs can also be arbitrary and do not necessarily
reflect their real quality.

In [10, 12] the authors study the effect of waiting time prioritization on social welfare. They
consider a single waiting list (or in our language, a single hospital), and the patients are prioritized
and may face different waiting times in the same list. In our model different hospitals may have
different waiting times, but we do not discriminate the patients, and at the same hospital everybody
faces the same waiting time. In [6] the authors give experimental evidence on the effect of expanding
patient choice of providers on waiting times. In their theoretical model, there are two hospitals
and the patients can freely go to the one with shorter waiting time. Thus the patients do not have
subjective preferences over hospitals, and waiting time is the only parameter affecting their choices.
Moreover, the authors of [9] study the relationship between waiting times and coinsurance, with a
single hospital and a single representative consumer.

In [19] the author studies resource allocation where the consumers wait for the stochastic arrival
of the items. Differently from our model and the models discussed above, in this work waiting time

"In [5] the authors show that in special market structures the consumers may benefit from their uncertainty about
the product valuation. But the model is very different.



does not burn social welfare, as the total waiting time of the consumers is always the time for
enough items to arrive. There are two different types of items to be allocated, and also two types of
consumers, respectively preferring one type of items. A consumer can decide whether he wants to
take the arriving item or to continue waiting for his preferred type. The social welfare of the system
is measured by the probability that a consumer is matched to his preferred type. Although this is a
very different model from ours, it is worth mentioning that the author provides a truthful queuing
policy which is optimal. As we have discussed in Section 1.2, it would be interesting to design a
truthful mechanism in our model from which the government can elicit the patients’ valuations.

Finally, in none of the works mentioned above is the insurance/resource provider’s budget
constraint considered as a parameter affecting waiting times and social welfare.

2 The Provision-After-Wait Problem

Now let us be formal about our model. The PROVISION-AFTER-WAIT problem studies how to
provide a single healthcare service to a population of patients, and is specified by the following
parameters.

e The set of hospitals is {Hq, ..., Hi}.

e For each i € [k|, the cost of H; serving one patient is ¢; € Z*, where ZT is the set of
non-negative integers.

e The set of patientsis {P1,...,Pn}.
e For each i € [k] and j € [m], the value of patient P; for hospital H; is v;; € Z+.

e An assignment of the patients to the hospitals is a triple (w, h, \), where w = (w1, ..., wy) €
(ZF)* is the waiting time vector of the hospitals, h : [m] — [k] is the assignment function, and
A= (A, ) €1{1,...,m}* with > ic[k) Ai = m is the quota vector, such that I OIEPY
for each i € [k].

According to such an assignment, patient P; will receive the service at hospital Hj,;) after
waiting time wyj).

e A patient P;’s utility under assignment (w, h, A) is u;(w, h, \) = Un(j); — Whj), that is, quasi-
linear in the waiting time.

The social welfare of this assignment is SW (w, h, \) £ > jeim) Wi(w, by A).

e The government has budget B € Z*+, and an assignment (w, h, \) is feasible if Zie[k} Ai-c; < B.

For the problem to be interesting, we assume that mcpin < B < Memax, where cpin and cpax
are respectively the minimum and the maximum cost of the hospitals.

Remark 1. The hospitals’ costs, the patients’ valuations, and the waiting times are assumed to be
integers without loss of generality. As long as they have finite description, we can always choose
proper units so that all of them are integers.

Remark 2. The quota vector of an assignment can be inferred from the assignment function and
thus is redundant. We define it explicitly to ease the discussion of our main results.

We would like to emphasize that, in the healthcare literature waiting time is recognized as a
tool to ration supply by driving down demand. As such, it does not depend on the congestion at
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the hospitals, but rather on the patients’ “willingness to wait”. In our model, the waiting times are
set by the government according to its budget and the patients’ values. Even if a hospital’s real
capacity (namely, the maximum number of patients it is able to handle, which is typically assumed
to be large enough) is bigger than the number of patients going there, the patients may still have
to wait for certain amount of time, because letting them wait for any shorter will result in more
patients demanding that hospital than the government can afford. This is demonstrated by the
following example.

Assume there are two hospitals, Hy and Hi, with costs $500 and $3,000 respectively.® There
are three patients, valuing H; for 10, 7, 3 respectively, and all valuing Hy for 0. The government
has budget $6,000. Assume that H; is capable of handling all three patients immediately. Yet,
if the government lets H; be saturated and sends all three patients there, the total cost will be
$9,000, which is unaffordable. It is clear that the government can afford only one patient at Hj.
Thus at equilibrium the waiting time at H; must be 7, and only the patient who is willing to wait
for 10 will actually be served there. Notice that this patient has to wait even though there is no
congestion at all, because of the budget constraint.

Since in reality the government may not be able or willing to force a patient to go to a hospital
assigned to him, it must ensure that wherever it wants that patient to go is indeed the best hospital
for him, given the waiting times. Accordingly, we have the following definition.

Definition 1. Assignment (w, h,\) is an equilibrium assignment if: (1) it is feasible, (2) for each
J € [m] we have uj(w,h,\) >0, and (3) for each j € [m] and i € [k] we have

uj(w, h, )\) > Vi — Wj.

Assignment (w, h, \) is an optimal equilibrium assignment if: (1) it is an equilibrium assign-
ment, and (2) for any other equilibrium assignment (N, w’, 1),

SW (X, w,h) > SW(w', ', \).
The social welfare of optimal equilibrium assignments is denoted by SWoga.

As we are interested in the (existence and) computation of optimal equilibrium assignments, we
assume that the government has precise knowledge about the cost of each hospital. We may also
assume that the government knows each patient’s valuation for each hospital, but we do not need
it. In fact, it is enough for the government to know the “distribution” of the k-dimensional valu-
ation vectors of the patients, namely, the fraction of the patients having each particular valuation
vector. Once it computes w in the optimal solution, the assignment function h will be automati-
cally implemented by the patients going to their favorite hospitals?, and the government need not
know where each patient is going. Notice that it is not sufficient for the government to know the
distribution of the valuations for each single hospital, since the correlations between valuations for
different hospitals will affect the outcome.

3 The Computational Complexity of Optimal Equilibrium Assign-
ments

We begin with two easy observations about our model, as a warm-up.

81n reality, the cheap “hospital” may in fact be a cheap service such as a CT scan, while the expensive one may
in fact be an expensive service such as an MRI. A patient is willing to get either one of them, with different values.

9If there are more than one favorite hospitals for a patient, we assume that he goes to the cheapest hospitals, so
that the budget constraint is satisfied.



The first observation is that, if the patients have unanimous preferences, namely, v;; = v;;s for
each i € [k] and each j, j/ € [m], then no equilibrium assignment can improve the social welfare
of the following trivial one: order the hospitals according to the patients’ valuations decreasingly,
find the first hospital H; such that mc; < B, and assign all patients to H; with w; = 0 and
wy = maX;nep vy for any i" # i. Indeed, for any equilibrium assignment (w,h,\) we have
Un(j)j — Wh(j) = Un(j’)j; — Wh(jry for each j,j" € [m]. Letting i* = argmin;,;-1(;)p ¢i, A" be such that
Ao = m and N, = 0 for all other i, b’ be such that h'(j) = ¢* for all j, we have that (w,h’, ) is
another equilibrium assignment with the same social welfare as (w, h, \). Thus it suffices to look
for an optimal equilibrium assignment that sends all patients to the same hospital. This is also
intuitive: if the patients are all the same, then at equilibrium the government must make them
equally happy, and it can do so by treating them in the same way.

Another observation is that, even if the government only cares about meeting the budget con-
straint in expectation, and is allowed to assign each patient to several hospitals probabilistically
(with the total probability summing up to 1), the optimal social welfare it can get in expectation
will just be the same as the optimal one obtained by deterministic assignments. This is so because,
at equilibrium, all the hospitals to which a patient P; is assigned with positive probability must
yield the same utility for him. Thus assigning P; deterministically to the one with the smallest
cost leads to another equilibrium assignment with the same social welfare and still meeting the
budget constraint. Accordingly, to maximize social welfare it suffices to consider only deterministic
assignments.

The following theorem shows that even the optimal deterministic assignments are hard to find
in general.

Theorem 1. Finding optimal equilibrium assignments is N P-hard.

Proof. The reduction is from the knapsack problem, which is well known to be N P-hard. In this
problem there are k items, ai,...,ar, and each a; has value v; and cost ¢;. We are also given a
budget B, and the goal is to select a subset of items so as to maximize their total value while
keeping their total cost less than or equal to B.

We can transform this problem to a PROVISION-AFTER- WAIT problem with k4 1 hospitals and
k patients. Each hospital H; with 1 < ¢ < k has cost ¢;, and each patient P; has value v; for H;
and 0 for all others. Hospital Hi 1 has cost 0 and is valued 0 by all patients. The government has
budget B.

Given an equilibrium assignment (w,h,\) to the PROVISION-AFTER-WAIT problem, we can
construct a solution to the knapsack problem with total value equal to SW(w,h,\) —the set
A = {i: h(i) = i} is such a solution. Indeed, without loss of generality we can assume h(i) = k+1
whenever h(i) # i. By the definition of equilibrium assignments, we have wi11 = 0, w; = v; if
h(i) = k + 1, and w; = 0 otherwise. Thus SW(w, h,X) = .. 4 v;, which is the total value of A in
the knapsack problem. As the total cost of (w,h, ) is > ;. 4, ¢; < B, the set A meets the budget
constraint in the knapsack problem.

It is easy to see that the other direction is also true, that is, given a solution A C [k] to the
knapsack problem, we can construct an equilibrium assignment (w, h, \) for the PROVISION-AFTER-
WAIT problem whose social welfare equals the total value of A.

Accordingly, an optimal equilibrium assignment to PROVISION-AFTER- WAIT corresponds to an
optimal solution to knapsack. ]

Remark 3. The NP-hardness of the knapsack problem comes from the need for integrality. Its
fractional version can be easily solved using a greedy bang-per-buck approach. But this is not the
case in our problem. Indeed, as we have noted, given a fractional equilibrium assignment we can
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construct a deterministic equilibrium assignment with the same social welfare. Thus for our problem
the fractional version is as hard as the integral version.

4 Approximating Optimal Equilibrium Assignments with
Arbitrarily Small Deficit

Although the optimization problem is hard when both the numbers of patients and hospitals are
large, in practice we expect the number of hospitals to be small, and it makes sense to solve the
problem efficiently in this case.

An easy observation is that optimal equilibrium assignments can be found in time O (mFpoly(m, k)).
Indeed, there are at most m* possible assignment functions h : [m] — [k]. For each h and the cor-
responding quota vector A, the total value of the patients are fixed, and thus maximizing social
welfare is equivalent to minimizing total waiting time. Accordingly, the best equilibrium waiting
time vector given h and A can be found using the linear program below (or one can prove that no
feasible waiting time vector exists at equilibrium).

min Z ’LUZ')\Z'
s 1€[k]
s.t. Vje€ [m],z S [k‘],’l)h(j)j — Wp(j) > Vij — Wy,

1€[k]

We then choose h such that the corresponding equilibrium assignment (w,h, \) maximizes social
welfare.

Given the above observation, we are interested in replacing the m* part with a better bound.
As we shall show, if the government is willing to violate its budget constraint by an arbitrarily
small fraction, then the problem can be solved much more efficiently.

Definition 2. Let € be a positive constant. An assignment (w,h,\) is an equilibrium assignment
with e-deficit if it is an equilibrium assignment with the feasibility condition replaced by the following
condition: 3 ey Aici < (14 ¢€)B.

We shall construct an algorithm that, in time O(logf, . m - (1 + €)3m?), finds an equilibrium
assignment with e-deficit whose social welfare is at least SWpg4, the social welfare of the optimal
equilibrium assignments with budget B. To do so, we first establish a strong connection between
the PROVISION-AFTER-WAIT problem and the well-studied problem of unit-demand auctions (see,
e.g., [7,1,3,8]).

4.1 A connection between the Provision-After-Wait problem and unit-demand
auctions

A unit-demand auction is specified by n goods (perhaps including identical ones), m buyers, and
the values v;; of each buyer j € [m] for each good i € [n]. The goal is to find an equilibrium
allocation and prices, where each buyer gets the good that maximizes his utility given the prices.
If we consider the patients in the PROVISION-AFTER- WAIT problem as buyers who want to buy
hospital services using waiting times, our setting looks a lot like a unit-demand auction. Except
one thing: in our setting the set of goods for sale is unknown. It is natural to consider the k
hospitals as k goods, but each one of them has to have certain amount of identical copies, as each
hospital may serve more than one patients. One cannot simply model the hospitals as k goods with
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m copies each, as then the resulted auction will give each patient his favorite hospital with zero
waiting time, and the budget constraint may be broken.

Notice that, if we were given the quota vector A in the optimal equilibrium solution of the
PROVISION-AFTER- WAIT problem, then we can consider each hospital H; as \; copies of identical
goods, and we have a well defined unit-demand auction. Every equilibrium solution to this auction
leads to an assignment function h and a waiting time vector w, such that (w, h, A) is an equilibrium
assignment to the original PROVISION-AFTER-WAIT problem. In particular, the budget constraint
is satisfied automatically, since we started with a quota vector that meets the budget constraint.

In general, for any quota vector A such that >, \; > m, the problem of finding equilibrium
assignments with respect to A reduces to finding equilibrium prices and allocations in unit-demand
auctions where each hospital H; corresponds to \; identical goods. If A meets the budget constraint,
namely, Y . ¢;A; < B, then the resulting equilibrium assignment meets the budget constraint.

It is well known that a unit-demand auction always has equilibrium prices and allocations,
which can be found by the Hungarian method [18]. The only caution is that, for a hospital to have
a well-defined waiting time, the prices of its corresponding goods in the unit-demand auction must
be all the same. Fortunately, as will become clear in Section 4.2, at equilibrium identical goods
must always have the same price, although this is not explicitly required.

Therefore for each quota vector A, whether it meets the budget constraint or not, there exists
an equilibrium assignment with respect to A. Following the result of [1], the optimal equilibrium
assignment with respect to A can be computed efficiently, and this will lead to our algorithm for
approximating the optimal equilibrium solution of the PROVISION-AFTER- WAIT problem.'?

4.2 A useful result in multi-unit auctions

Our algorithm uses that of [1] for unit-demand auctions as a black box, therefore we first recall
their result (while using our notation to help establish the connection with our results).

Definition 3. A unit-demand auction, or simply an auction in this paper, is a triple (g,m,v),
where the set of goods is {1,2,...,g}, the set of bidders is {1,2,...,m}, and v is the valuation
matrix, that is, a g X m matriz of non-negative integers. Each v;; denotes the valuation of bidder
7 for good i.

Given an auction (g,m,v), a matching is a triple (u,p,u), where u = (u1,...,uy) € (ZT)™
is the utility vector, p = (p1,...,pg) € (ZT)9 is the price vector, and p C [g] x [m] is a set of
good-bidder pairs such that no bidder and no good occur in more than one pair. Bidders and goods
that do not appear in any pair in @ are unmatched.

Definition 4. Given an auction (g, m,v), a matching (u, p, ) is weakly feasible if for each (i,7) € u
we have u; = vi; — p;, and for each unmatched bidder j we have uj = 0.

A matching (u,p, ) is feasible if it is weakly feasible and for each unmatched good i we have
pi = 0.
A matching (u,p, ) is stable if for each (i,7) € [g] X [m] we have uj > vij — p;.

A matching (u*,p*, u*) is bidder-optimal if: (1) it is stable and feasible, and (2) for every
matching (u, p, 1) that is stable and weakly feasible, and for every bidder j, we have u;‘ > uy.

In [1] the authors construct an algorithm, STABLEMATCH, which, given an auction (g,m,v),
outputs a bidder-optimal matching (u*, p*, #*) in time O(mg?).

Notice that the original definitions in [1] have for each good-bidder pair a reserve price and a
maximum price. In our model we do not need them, so the definitions above are more succinct

10 Although equilibrium assignments can be efficiently computed given A, the problem of deciding the “correct” A
makes the PROVISION-AFTER-WAIT problem hard, even in very special cases, as shown in Section 3.
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than the original ones. In fact, as pointed out by [1], with maximum prices, there may be no
bidder-optimal matching. But without them such a matching always exists, as shown by [7].

Notice also that [1] does not distinguish between weak feasibility and feasibility. But it is easy
to see that their algorithm and its analysis still apply under our definitions. We shall use these two
notions when analyzing our algorithm.

Next we establish two properties for the matching (u*, p*, u*) output by STABLEMATCH.

e Property 1. If g > m, then without loss of generality we can assume that (u*,p*, u*) has no
unmatched bidder.

Indeed, if there exists an unmatched bidder j, then there must exist an unmatched good i
(since g > m). Since (u*, p*, u*) is bidder-optimal, we have uj =0, p; =0, and uj > v;; —p;.
Thus we have v;; = 0, and the matching (u*,p*, " U {(7,)}) is another bidder-optimal
matching.

e Property 2. If two goods 4,7’ are identical, namely, v;; = v;; for each bidder j, then p} = pj.

Indeed, if both goods are unmatched then pf = pj, = 0. Otherwise, say (i,5) € p*. By
definition, u; = vij — Py > vy —ph. As vy = vy, we have pf < pj. If 7/ is unmatched then
pi = 0, implying p; = 0. If (¢, ;") € p* then similarly we have p}, < p}, and thus p} = p},

again.

4.3 Our algorithm for approximating optimal equilibrium assignments

Now we are ready to construct our algorithm for approximating optimal equilibrium assignments.
The algorithm takes as input the number of patients m, the number of hospitals k, the hospitals’
costs ci, ..., ck, the patients’ valuations v;;’s for the hospitals, the budget B, and a small constant
e > 0. Letting (w, h, \) be an optimal equilibrium assignment, the algorithm works by guessing
A, constructing a multi-unit auction based on the guessed vector, computing the bidder-optimal
matching using STABLEMATCH, and extracting the waiting time vector and the assignment function
from the matching.

More precisely, let L £ [log;,.m], Cop £ 0, and C; = |(1 + €)!| for each £ = 1,...,L. The
algorithm examines all the vectors A = (Ar,...,\y) € {Co,C1,...,CL}* one by one, say lexico-
graphically.

If > e Xi € [m, (14 e)m] or if D iclk] Ai¢; > (1 + €)B, the algorithm disregards this vector
and moves to the next. Otherwise it constructs an auction (g, m, ) as follows. The set of patients
corresponds to the set of bidders; each hospital H; corresponds to i copies of identical goods
Hii, ... Hj,, thus g = ey Ai; the valuation matrix © has rows indexed by {ir : i € [k],r € [Ai]},

(2

columns indexed by [m], and for each j € [m], i € [k], and r € [N;], Vi ; = v4j.

The algorithm then runs STABLEMATCH with input (g,m,?) to generate the bidder-optimal
matching (u*,p*, u*), and extracts the waiting time vector w and the assignment function h as
follows. For each hospital H;, let w; = pj;. For each patient P;, let H;. be the unique good to
which P; is matched (by Property 1 in Section 4.2 such a good always exists) according to p*, and
let h(j) = 4. The triple (i, h, A\) may not be an assignment as > ielk] A may be larger than m, but
there is a unique quota vector N such that (w, ﬁ, N ) is an assignment.

The algorithm computes the social welfare of the assignment (w, fz, N ) for each A that is not
disregarded, and output the assignment (w*, h*, A\*) with the maximum social welfare.

We prove the following theorem.
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Theorem 2. Our algorithm runs in time O(logh,.m - (1 + €)3m%), and outputs an equilibrium
assignment with e-deficit, (w*, h*, \*), such that SW(w*, h*,\*) > SWoga.

Proof. The running time of the algorithm can be immediately seen. Indeed, if a vector A is not
disregarded, then it takes O(mg) = O((1+¢)m?) time to construct the auction as g € [m, (1+¢)m],
O(mg?®) = O((1 + €)>m*) time to run STABLEMATCH, and O(m) time to extract the assignment.
Accordingly, it takes O((1 + €)®>m?4) time to examine a single vector A, and there are O(log? Lem)
vectors in total.

The remaining part of the theorem follows from the two lemmas below.

Lemma 1. (w*, h*, \*) is an equilibrium assignment with e-deficit.

Proof. In fact, we show that for each vector A that is not disregarded, the extracted assignment
(w,h,N) is an equilibrium assignment with e-deficit. To see why this is true, first notice that
> i) Aici < (1 + €)B by the construction of the algorithm, thus

Z X;CZ < Z ;\ici < (1 + G)B. (1)

i€[k] i€[k]

Second, for each j € [m], letting H]:L(j)r be the good matched to P; according to u*, we have

AV AN, N _oa % _oa ok
(0,7 X) = Vi) = @iy = Pagyes ~ Prgn = Phiin =u; =20, 2)

*
Phiiyr
where the third equality is because of Property 2 in Section 4.2 (in particular, H (i) and H h(j)r

are identical goods, and p;f1 , and the other equalities/inequality are by definition.

o1 = Pigyr)
Third, since (u*, p*, 1*) is a bidder-optimal matching for auction (g, m, 0), we have that for each

~

j €[ml, i€ [k], and r € [\i],
72 Virj — Diy = Vij — Py = Vij — Wi,

and thus

wj(w, b, N) = uh > v — 1. (3)

Equations 1, 2, and 3 together imply that every (w,ﬁ,&’ ) is an equilibrium assignment with
e-deficit, and so is (w*, h*, A*). O

Lemma 2. SW(w*,h*,\*) > SWoga.

Proof. To see why this is true, arbitrarily fix an optimal equilibrium assignment (w, h, A). Notice
that for each hospital H;, there exists a “good guess” \; € {Cy,...,Cr} such that

A <A < 1+

Since )\ satisfies Zie[k] A =m and Zie[k] Aic; < B, the vector A= (5\1, ..., Ap) satisfies

Z Ai €[m,(1+€e)m] and Z Aici < (1+ €)B.
i€[k] i€[k]

Thus it won’t be disregarded by the algorithm. Let (g,m,?) be the auction constructed from
A, (u*,p*, u*) the output of STABLEMATCH under input (g, m,?), and (w0, h, \’) the assignment
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extracted from (IAL*, p*, p*). Following the same reasoning as in Equation 2, we have that for each
j € [m], uj(i, h, \') = uj. Thus
SW (i, h, X) = ) uj. (4)

From (w, h, \), we construct a matching (u,p, u) for the auction (g, m, ) as follows. For each
bidder j, we have u; = vy(jy; — wp;); for each good H;, with i € [k] and r € [5\2], we have p;, = w;;
and for each hospital Hj, letting j; < jo < --- < jy, be the patients assigned to H; by h, we have
= A{Grir) i € [K],r € [Ai]}.

It is easy to verify that the so constructed (u,p, ) is stable and weakly feasible, thus by the
optimality of u* we have that for each j € [m],

X
u; > uy. (5)
Moreover, for the same reason as Equation 4, we have

SW(w,h,A) = Y uj. (6)
J€[m]

Equations 4, 5, and 6 together imply

~

SW (i, h, X') > SW (w, h, \) = SWora
as we want to show.

In sum, Theorem 2 holds.

Remark. By running our algorithm with input budget B/(1+¢€), we obtain an assignment whose
budget is at most B and whose social welfare is at least the optimal social welfare with budget
B/(1 + ¢€). However, this social welfare may be much smaller than the optimal social welfare with
budget B. That is why we insist on having a deficit instead of meeting the budget constraint
strictly.

5 The Endogenous Emergence of Waiting Times

Next we study the dynamics between hospitals and patients. We show that in our model, when the
patients’ valuations are in some generic position, the only thing the government needs to enforce
is the amount of money it is willing to pay to each hospital, which can be equivalently enforced by
the quota vector. Given the quotas, the optimal waiting times and the optimal social welfare will
emerge endogenously from the dynamics.

5.1 The uniqueness of the optimal equilibrium

We start by defining the generic position of the patients and studying the structure of the optimal
equilibrium under it. Following [3], we have the following.

Definition 5. The patients { P, ..., Py} with valuations (vij)ic[k), je[m) ore independent if, there
do not exist two different subsets S and T' of the multiset {v;; : i € [k],j € [m]} such that, both S
and T contains positive numbers and Y qv =Y cp?'.
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Notice that the above definition of independent patients is weaker than the typical definition
of generic position, which rules out any relevant equality relation among the valuations. Let A be
a quota vector with Zie[k] Ai > m.'' Recall that given A, the PROVISION-AFTER- WAIT problem
reduces to a unit-demand auction. Thus following [25, 7], among all equilibrium waiting time
vectors with respect to A, there is a unique one that simultaneously minimizes the waiting time
at each hospital and maximizes the utility of each patient.'? Denoting this minimum waiting time
vector by w, we prove the following theorem.

Theorem 3. Assuming the patients are independent, there is a unique equilibrium assignment with
respect to A\ and w. Moreover, denoting this equilibrium by (w, h, \), we have that min;ep w; = 0,
and that at this equilibrium every hospital with positive waiting time is saturated, namely, |h=1(i)| =
A; whenever w; > 0.

Proof. Without loss of generality, we assume \; > 0 for each ¢ € [k]. Consider the demand graph
G given w, that is, a bipartite graph with k& nodes on one side for the hospitals and m nodes on
the other side for the patients. For each i € [k] and j € [m], the edge (i,j) is in G if and only if
H; maximizes P;’s utility, namely, v;j — w; = maxy¢ep vi; — wy. By definition, any equilibrium
assignment must assigns each patient P; to an adjacent hospital H;. Thus it suffices to show that
within each connected component of G there is only one equilibrium assignment. We start by
proving the following claim.

Claim 1. There is no cycle in G.

Proof. For the sake of contradiction, assume there exists a (necessarily even-length) cycle
(i1,71,%2, 72, - - -, ¢, Je,71), where i,’s are hospitals and j,’s are patients. By the construction of G,
we have that for each r € [¢], both H; and H; ., maximize P; ’s utility, with £ 4+ 1 defined to be
1. Thus

r4+1
Uirjr - wir = Ui7'+1j7‘ - wi7'+1'
Summing all ¢ equations together, we have

z : /Ui'rj'r - wi'r = § : Uir+1jr - wir-{»l’

rell] rell)]

2 :Uirjr - E :wir = § :UirJrljr - z :wiTJrl'

rell] refl) refd] refd]

namely,

As Zre[ﬁ] Wy, = Zre[z] Wi,y q, WE have
D Vg = Y Vi
ref(] refd)

Accordingly, we have found two different subsets {v;, ;. : 7 € [(]} and {v;_,,;, : v € [{]} that sum up
to the same value, contradicting the hypothesis that the patients are independent. O

Following Claim 1, the connected components of G are all trees. Similarly, we have the following:

Claim 2. Fach connected component of G contains at most one hospital with waiting time 0.

"Notice that we do not require that A satisfies the budget constraint, and our results apply to such As as well.
12Notice that this is the waiting time vector computed by the STABLEMATCH algorithm of [1].
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Proof. Again for the sake of contradiction, assume there is a connected component with two different
hospitals H; and H;» such that @w; = wy = 0. Accordingly, there is a path (i1, j1, 2, j2, . .., i) where
i,’s are hospitals and j,’s are patients, such that i; = 7 and 4, = /. Similar to the proof of Claim
1, for each r < £, we have

virjr - wir = vi'ﬁLljr - wiTJrl'

Summing all £ — 1 equations together, we have

/-1 -1 /-1 /-1
§ ,U’L'rj'r - z : wir = E Uir+ lj'r - z : wir+1 *
r=1 r=1 r=1 r=1

As w;, = w;, = 0, the above equation implies

-1 -1 -1 -1
r=1 r=2 r=1 r=2
and thus
/-1 /-1
Z virjr = Z vir«kljr?
r=1 r=1
again contradicting the hypothesis that the patients are independent. O

Claim 2 and the following claim together imply that each connected component of G has exactly
one hospital with waiting time 0.

Claim 3. Fach connected component of G has at least one hospital with waiting time 0.

Proof. By contradiction. Assume there is a component C' such that w; > 0 for each H; in C. Let

€1 = min w;.

1 HieC )
Notice that for each P; not in C, by definition, the best utility that j can get from hospitals in C
is strictly less than uj"**, the best utility that j can get from his favorite hospital. Let

: max —
€ = ININ | U; — max(v;; — W;
Pigc | ? Hiec( J i)

We have € > 0 and €5 > 0. Let € = %, w; = w; — € for each H; € C, and w' = (w_¢, w).
That is, w’ is w with all waiting times of hospitals in C' reduced by €. As € < €1, w' is a valid
waiting time vector.

Notice that for any equilibrium assignment (w, h, A), the assignment (w’, h, ) is still an equi-
librium. Indeed, when the waiting time vector changes from w to w’, for each patient P;, his utility
at every hospital H; € C increases by €, and his utility at every other hospital remains the same.
For P; ¢ C, € < €2, and thus the best utility j gets from C is still smaller than ui"**, which is j’s
utility at Hy(j) ¢ C. For P; € C, we have Hj,;) € C as well, and Hy,(;) still maximizes j’s utility
after the increase.

Accordingly, v’ is another equilibrium waiting time vector. But w] < w; for each H; € C' and
w} = w; for each H; ¢ C, contradicting the hypothesis that @ minimizes the waiting time of each
hospital among all equilibrium waiting time vectors. Therefore Claim 3 holds. O
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Following Claims 1, 2, and 3, each connected component C' can be considered as a tree rooted
at the unique hospital with waiting time 0, with hospitals and patients alternating along each path.
Based on this structure, we show that there is only one way of assigning the patients to the hospitals
at equilibrium in C. To do so, we need the following:

Claim 4. For each hospital H; € C' with w; > 0, the degree of H; in G is strictly larger than its
quota A;.

The proof is similar to that of Claim 3: if the degree of some H; € C is at most A;, then we
can find a proper value e € (0,w;) such that the vector w’ = (w_;,w; — €) is still an equilibrium
waiting time vector. Indeed, with properly chosen ¢, for every equilibrium (@, h, \), let h’ be the
assignment such that h'(j) =i if P; is adjacent to H; (this is doable because the degree of H; is at
most \;), and A/(j) = h(j) otherwise. Then (w’, h’, \) is another equilibrium. But this contradicts
the hypothesis that w minimizes the waiting time of each hospital among all equilibrium waiting
time vectors. The formal analysis is omitted.

Following Claim 4, we have that the leaves of tree C' are all patients. Indeed, if there is a hospital
with degree 1 and positive waiting time, then its quota is 0, contradicting our original assumption
that all hospitals have positive quotas. Accordingly, at every equilibrium, every patient at a leaf
must be assigned to his preceding hospital, as this is the only one maximizing his utility. Letting
H; be a non-root hospital whose descendants are all leaves, we have that the number of descendants
of H;, denoted by d;, is at most \;, otherwise no equilibrium exists. As w; > 0, by Claim 4 we
have that the degree of H; is strictly larger than \;, which implies d; > \;. Accordingly, H; uses
up all its quota to serve its descendants, and the patient P; preceding H; must be assigned to his
preceding hospital.

Repeating the above reasoning in a bottom-up way along the tree, we have that there is only
one way of assigning the patients to hospitals at equilibrium with respect to A and w, that is,
each patient is assigned to his predecessor in GG, and every hospital with positive waiting time is
saturated by its descendants. Thus Theorem 3 holds. 0

By definition, the equilibrium (w, h, \) maximizes social welfare with respect to A, thus it is
reasonable to assume that this is the equilibrium that the government aims to implement.

5.2 The dynamics between hospitals and patients

We now show that given A, the waiting time vector w will endogenously emerge from the dynamics
between hospitals and patients, and so will h. We consider a continuous-time dynamics, where
the patient population arrive continuously and uniformly along time. In such a dynamics, the
quota-vector A represents the service rate of the hospitals that the government is willing to pay for.
Namely, for each hospital H;, the total number of patients paid by the government by any time ¢
is )\it.lg

The set of patients in previous sections, { P, ..., Py} with valuations (vj)ic(r) jem], NOW rep-
resents the set of types of the arriving patients. That is, although the patient population goes to
infinity, there are only finitely many types of them. Every type has arrival rate 1: by any time ¢,
the number of patients that have arrived is mt, where ¢ of them are of type P; (i.e., with valuation
(vij,...,vk;)), and another ¢ of them are of type P, etc. We say that the patient population is
independent if {P,..., Py} is independent. Notice that in general there may be different P; and

13The budget constraint B now represents the spending rate of the government: the total amount of money the
government can afford by time ¢ is Bt. But as already said, our conclusion in this section holds even when A does
not satisfy the budget constraint. Thus we shall not talk about the budget constraint in the remaining part of this
section.
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Pj with the same valuation, and the number of patients of a particular type by time ¢ may be
larger than ¢. But when the population is independent, any different P; and P;; must have different
valuations, and indeed represent different types. Below we consider independent population.

Let w(t) = (wq(t),...,wx(t)) be the non-negative waiting time vector of the hospitals at time
t, such that w(0) = (0,...,0). A patient of type P; arriving at time ¢ chooses a hospital H;
maximizing his utility given w(t), and will be served there at time t + w;(t)."* To break ties
consistently throughout time, we impose a partial ordering over the hospitals, according to their
positions in the demand graph G with respect to w. In particular, if H; and H; are in the same
connected component of G and H; precedes H;, then at any time ¢ and for any patient of type
P; whose utility is maximized at both H; and H; given w(t), we assume that P; does not choose
H;. If H; and Hy are in different connected components, then P; can choose one arbitrarily, or
even split the population of this type arbitrarily between H; and H}, as indicated by the definition
below.

Definition 6. For any i, j,t, the demand rate of P; for H; at time t, denoted by d;;(t), is a number
in [0,1] such that,

© D ic di(t) =1,

e d;j(t) > 0 only if H; mazimizes P;’s utility at time t, and there is no other hospital H] in the
same connected component of G that does so.

The demand rate for H; at time t is d;(t) £ > jem) dij ()

The fractional values of the d;;’s indicate how the patients of the same type will split between
all hospitals maximizing their utilities. For example, d;;(t) = 1/3 means that fixing the current
waiting times, in the long run a third of the patients of type P; will choose H;. Notice that we do
not completely specify how the patients should make their decisions when there are ties, and yet
our results hold no matter how.

Because the patients arrive continuously under a constant rate, their effect on the waiting times
at any point of time is infinitesimal, and w(t) is continuous. By definition, within an arbitrarily
small time interval (¢,¢ + 0), the number of patients choosing H; is d;(t)d. Since the number of
patients served by H; in time § is A\;d, the waiting time will not change if d;(t) = A; (i.e., if the

d; (£)6—X\;0
s

demand rate matches the service rate), and will change by otherwise, unless w;(t) = 0

and d;(t) < A;, in which case w;(t 4+ ¢) will remain 0. That is,

(dT@) - 1) 5 if wi(t) > 0 or di(t) > A;,

0 otherwise.

wi(t + 6) — w;(t) _{ (7)

Accordingly, for each i € [k] the right derivative of w;(t) is

(8)

dywi(t) _ | lims_g = = S0 3 if a(t) > 0 or di(t) > A,
d )]0 otherwise.

Notice that for particular tie-breaking rules, the function d;(¢) may not be continuous, and thus
w;(t) may not be differentiable.

We say that w(t) is at most w, written as w(t) < w, if w;(t) < w; for each i € [k]. Moreover, we
say that w(t) is smaller than w, written as w(t) < w, if the above inequality holds for some i € [k].
The following two theorems show that the dynamics will always converge to w in finite time, and
will never exceed w before converging.

1436 the patients are served in a first-in-first-out queue.
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Theorem 4. When the patient population is independent we have that:
(1) w(t) <w for anyt > 0;
(2) if w(t) = w then d“;ig(t) =0 for any i € [k]; and
(3) if w(t) < w then there exists i € [k] such that d++ti(t) > 0.

Proof. To prove Statement (1), it suffices to show that whenever w(t) < w and w;(t) = w; for
some i, we have d;(t) < \; and thus w;(¢) will not increase. Since |h=1(i)| < \; by the definition of

equilibrium (h, @, ), it suffices to show

or equivalently, to show that B

if h(j) # i then dij(t) =0.
To do so, arbitrarily fix a type P; such that h(j) # i. If v;j — w;(t) < maxy vyj — wy(t) then
certainly P; does not choose H; given w(t), and d;;(t) = 0. Assume now

vy —w;i(t) = Max vyrj — wir (t).
Notice that

where the equality is because w;(t) = wj, the first and the last inequalities are by definition, and
the second is because wy,;y(t) < Wj,(;) by hypothesis. Thus we have

vij = wilt) = vij — Wi = Vh(5); — Whj) = Vh(i); — Whip(t) = maxvig — wy(t).

The second equality implies that both H; and H,;(j) are adjacent to P; in the demand graph G
according to w, and thus it must be the case that H A(j) precedes P; and P; precedes H; in G. The
last equality implies that Hj ;) also maximizes the utility of P; given w(t), and thus P; will not
choose H; according to our tie-breaking rule, namely, d;;(t) = 0.

Accordingly, d;(t) < |h=1(i)| < \i, and Statement (1) holds.

Statement (2) simply follows from the fact that, when w(t) = w, the patients choose their
hospitals according to the unique equilibrium (w, b, ), and thus d;(t) = |h=t(i)| = \; for every i
such that w; > 0, and d;(t) = |h~1(i)] < \; for every i such that w; = 0.

To prove Statement (3), it suffices to show that when w(t) < w, there exists some hospital H;
with d;(t) > A;. For the sake of contradiction, assume d;(t) < A; Vi. We shall construct a new
demand vector (d;;(t))ic[x),je[m) Such that

di;(t) € {0,1} Vi, j, and dj(t) £ d};(t) < \i Vi
J

To do so, consider the demand graph G(t) with respect to w(t). For each H; and Pj, d;;(t) > 0
implies that H; and P; are adjacent in G(t). Since the patient population is independent, G(t) is
a forest with hospitals and patients alternating along each path, as in the proof of Theorem 3.
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To begin with, let d;;(t) = 0 Vi,j, and A\; = A; Vi. We have d;(t) < A; Vi by definition. In
the procedure of the construction, for each H;, A, denotes its remaining quota, after some patients
have been assigned to it. It will be invariant that

di(t) + N; =X Vi, di(t) <N Vi, and Y di;(t) =1 VP in the graph. (9)
1€[k]
In the first step of the construction, we arbitrarily choose a leaf and distinguish two cases. If
the chosen leaf is a patient, say Pj«, then let the unique adjacent hospital be H;«. We have

dije(t) = 0 Vi # i*, and dgejo (t) = 1 < dge (£) < N

Set dj.«(t) = 1, di=j+(t) = 0, and Al. = Al. — 1, and remove P} from the graph. That is, Pj-
is assigned to H;+ and occupies 1 quota there. Notice that the invariance remains. Indeed, d.(t)
increases by 1 and \,. decreases by 1, both d;=(t) and A. decrease by 1, and everything else remains
unchanged.

If the chosen leaf is a hospital, say H;+, then let the unique adjacent patient be Pj«. We have

0 < djwj=(t) = di=(t) < Nia.

If Al > 1 (this is true in the first step, but may not be true later), then set di. ;..(t) = 1, djj=(t) = 0
Vi, and N, = A.. — 1. Remove Pj- and all adjacent degree-1 hospitals from the graph. That is,
Pj« is assigned to H;+, and for any other hospital H; with P;+ the only adjacent patient, no patient
will be assigned to it and d}(¢) will remain 0. Notice that the invariance remains. Indeed, d..(t)
increases by 1 and \,. decreases by 1, d;=(t) = d;=;=(t) = 0 and A is non-negative, for any i # i*
d;(t) either decreases or remains unchanged, and everything else remains unchanged.

If \.. = 0 (this does not happen in the first step, but may happen in later steps), then d;«;«(t) = 0
as well and we simply remove H;~ from the graph, keeping the invariance.

Repeat the above step, and after at most m + k rounds we finish processing all nodes. In the
end, all the d;;(t)’s are either 0 or 1, and d;(t) < A; Vi. Accordingly, the d};(f)’s correspond to
an equilibrium assignment with waiting time w(t), contradicting the fact that w is the minimum
equilibrium waiting time vector with respect to A.

Therefore Statement (3) holds. O

Letting MSW = > jcm) MaXje[] Vij and Apmay = max;c(y] Ai, we have the following theorem.

Theorem 5. When the patient population is independent, the dynamics converges to w in time
t < MSW - Anaz-

Proof. Similar to [8], we consider the following potential function:
P(t) £ " dwi(t) + > uy(t),
i€[k] J€[m]

where u;(t) £ max;ep vij — wi(t). By Theorem 3 we have minep@w; = 0. By Theorem 5.2 we
have that before the dynamics converges, (0,...,0) < w(t) < w for any ¢, and thus min;c ) w;(t) =
min;epy w; = 0. Accordingly, u;(t) > 0 for each P;, and P(t) > 0. As P(0) = MSW to begin with,
it suffices to prove that P(t) strictly decreases, and the decreasing rate is at least 1/ A qq-

To do so, notice that

P(t) = Y Nwi(t)+ Y > dij(t)(vig — wi(t))
= > Awi(t) = DO dig)wilt) + Y dij(t)vy
i J 12

— Z()\i — d;(t))w;(t) + Z dij()vij-
ij

%
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Thus for any arbitrarily small 4 > 0, by definition we have

P(t+6) — P(t)
= > (N —di(t+ 0)wilt +6) — (A — —i—ZdUt—I—év” Zdw )vij

%

_ Z(w@-(t+5)— ()i — dit szt+5 (t+0) +Zw@t+5)d()
+Zdw (t + 8)vi; — Zdw )vij

- Z(wi(t—i—é) — wi(t ))()\ = i) + D dig(t + O)viy — Y dig(t + O)wilt +9)
—Zdij(t)vij—l—Zdij(t)wi(t—l-(S) ? ’

= Z:wi(tw)— i(6) (N — di(t +Z i (t +0) = dij(8)) (vij — wi(t +9)).

Since w(t) is continuous, we have lims_ovi; — w;(t + §) = v;; — w;(t). Since the patients only
choose hospitals that maximize their utilities, for any 4, j such that v;; —w;(t +9) < u;(t), we have
d;j(t) = 0 and d;;(t + 6) = 0 for arbitrarily small 6. That is, for each P;,

Z dij(t) = Z dij(t+0) =1.
i:vi]-—wi (t):uj (t) iZ”Uij —wi(t):u]- (t)
Combining this equation with Equation 7 we have

P(t+6) — P(t)
6—0 )

() — A2
- 3 MJrZuj(t)hm

‘ i . 5—0 0
2w (t)>0 or d; (6)>\; J
(1) — 2’ g
= - ) Tt wlim e
i:wi(t)>0 or di(t)z)\i v J

R (Ut
2w (t)>0 or d;(t)>N;
By Statement (3) of Theorem , there exists some hospital H; such that d;(t) > \;, and thus

. P(t+6)—P(t) 1 1
<——< - )
%l—rf(l) 5 B )\1 - Amax

Therefore P(t) decreases at speed at least 1/\,4, and the dynamics converges to w in time at most
MSW - Apaz, as desired. ]

6 The Optimality of the Randomized Assignment

Although waiting time is widely used to ration demand in economic settings, it may burn a lot
of social welfare, since the time waited is not beneficial to anybody. Therefore in this section, we
study different allocation schemes in healthcare and give evidence that the government can avoid
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the welfare-burning effect of waiting times by limiting the choices available to the patients. In
particular, we show that the randomized assignment is actually optimal in terms of social welfare
in many cases.

Following our discussion in Section 1, we consider the case of two hospitals, a “good” one H;
and a “bad” one Hy, with costs ¢; > ¢o. As already said, whoever prefers Hy can be directly
assigned there and we do not consider them in our setting any more. The patients preferring H
are indexed by the interval [0, 1], and each patient z is associated with a value v(x), indicating how
long he is willing to wait at H; to be treated there instead of Hy. We assume that the patients
have been renamed and normalized, so that v(x) is non-decreasing and v(0) = 0. Since the number
of patients is infinite, we talk about the cost density c¢;(z) of each hospital, rather than the cost for
serving a single patient. Without loss of generality, ¢;(xz) = 1 and c¢o(x) = 0. The government has
budget B € (0,1), meaning that at most a B fraction of the patients can be served at H;. The
government’s goal is to maximize the expected social welfare subject to the requirement that the
budget constraint is satisfied in expectation.

In the randomized assignment, the government assigns each patient to H; with probability p
and waiting time 0. The budget constraint gives

1
/ pei(z)dz =p = B,
0

and the corresponding social welfare, denoted by SW,., is

1 1
SWT:/O pv(w)d:v:B/O v(x)dx. (10)

Below we compare this social welfare with that of lotteries.

Definition 7. A contract is a pair (p,w), where p € [0,1] is the probability of assigning a patient
to Hi, and w > 0 is the waiting time for that patient at Hy.

A lottery consists of a set of contracts, denoted by the domain D C [0,1] of the probabilities,
and the waiting time function w(p) defined over D.

Given a contract C' = (p,w) for patient z, the expected utility of = is
w(z,C) = p- (v(z) — w).

Given a lottery L = (D,w(p)), each patient x chooses the contract C(z) = (p(x), w(p(z))) maxi-
mizing his expected utility. Namely, for each p € D,

u(z,C(z)) = u(z, (p, w(p))).

If there are more than one values of p that maximize the expected utility of x, we assume that p(zx)
is the smallest one, so that the cost of serving patient z is minimized. Notice that p(z) depends on
x only indirectly, via the function v(z): indeed, p(x) = p(z’) whenever v(x) = v(2’). Thus we can
write p(z) as p(v(x)).

As an example, the randomized assignment is a lottery with D = {B} and w(B) = 0.1 As
another example, any equilibrium assignment is also a lottery, with D = [0, 1] and w(p) always
equal to the waiting time of H; specified by the equilibrium. Indeed, for every patient z, the
contract maximizing his expected utility is to go to the hospital assigned by the equilibrium with
probability 1.

'5In general D can be a proper subset of [0, 1], as the government may not offer the whole interval [0, 1] for the
patients to choose from.
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Without loss of generality, we assume that D is a subinterval of [0, 1], denoted by [a, b]. Indeed,
if a patient can choose between (p1,w(p1)) and (p2, w(p2)) according to the lottery, then by using
a “mixed strategy” he can choose to be assigned to H; with any probability p = ap; + (1 — a)p2
with « € [0, 1], and corresponding expected waiting time apiw(p1) + (1 — a)paw(p2).

Also without loss of generality, we assume that the patients’ expected waiting time function
p - w(p) is convex, and thus differentiable almost everywhere. Indeed, for any contracts C; =
(p1,w(p1)), Ca = (p2,w(p2)), and C = (p,w(p)) with p = ap; + (1 — a)py for some « € [0, 1], if
p-w(p) > aprw(pr) + (1 — a)paw(p2), then a patient is always better off by mixing between Cy and
Cs instead of choosing C. Thus we may simply assume that p-w(p) < apiw(pr) + (1 —a)paw(p2).t6

The social welfare and the budget constraint are naturally defined for lotteries, as follows.

Definition 8. Given a lottery L = ([a,b],w(p)) and the contracts (p(x),w(p(x))) chosen by the
patients x € [0, 1], letting u(x) = u(z, (p(x), w(p(x))), the social welfare of L, denoted by SWy, is

1
SWL:/ u(z)dz.
0

Lottery L is feasible if the budget constraint is satisfied, namely, fol p(xz)dx = B.

Notice that we require a feasible lottery to use up all the budget. This is again without any
loss of generality, since our theorem below implies that any lottery with cost B’ < B is beaten by
the randomized assignment with budget B’, and thus by the one with budget B.

We assume that the expected waiting time function pw(p) is piece-wise twice differentiable in p.
Notice that, although assuming twice differentiability of pw(p) over the whole domain is too much,
assuming it piece-wisely is quite natural. For example, the government may use different w(p)’s
for different intervals of p, but inside each interval it uses a smooth w(p). Both the randomized
assignment and equilibrium assignments trivially satisfy this assumption.

The following theorem shows that, when the distribution of the patients’ valuations accumulates
toward the higher-value side, the randomized assignment is optimal compared with any lottery.
Since equilibrium assignments are special cases of lotteries, the randomized assignment is optimal
compared with them as well.

Theorem 6. For any concave valuation function v(z) and any feasible lottery L = ([a,b], w(p)),
we have SW, > SWy,.

Proof. As the choice of p(x) maximizes the utility of z, for any A > 0 patient = prefers contract
C(z) = (p(z),w(p(z))) to contract C(z+ A) = (p(z+ A),w(p(xr + A))), and patient = + A prefers
C(x+ A) to C. That is,

u(z) = p(z)[v(z) —w(p(r))] = p(z + A)[v(z) —wplz + A))],

and
wz+A) =plz+ A)fp(z +A) —w(p(z + A))] = p(z)[v(z + A) —w(p(z))]-
Accordingly,

v(z) - Ap(z) < Ap(z) - w(p(z))), and v(z+A)-Ap(r) > A(p(z) - w(p(z))). (1)

As pw(p) is piece-wise twice differentiable, all the differential equations and statements made
in this paragraph hold piece-wisely, and we shall not mention the piece-wiseness again and again.
To begin with, letting A — 0 in Equation 11, we have (with variable z omitted for conciseness)

_ d(pw(p))
v= Br— (12)

Y8Notice that w(p) itself may not be convex.
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where the function on the right-hand side is well defined and differentiable in p. As p(v) is the
inverse of Equation 12, it is differentiable in v. As v(x) is concave, it is differentiable in x almost
everywhere. Thus p(x) = p(v(x)) is differentiable in z. Accordingly, we have

du(z) = dp-(v—w)+p-(dv—dw)=p-dv+v-dp— (w-dp+p-dw)
= p-dvtv-dp—d(p-w)=p-dv+v-dp—v-dp=p-dv. (13)
(Notice that p(v) and p(x) may not be continuous functions, but we only need them to be “nice”
piece-wisely.)
Now putting all the pieces together and integrating both sides of Equation 13 over the whole
domain, we have

v(x)
u(z) = /0 p(0)do. (14)

As v(z) is non-decreasing and concave, we have that v'(z) > 0 and v'(x) is non-increasing.
If there exists < 1 such that v'(z) = 0, then let xy be the smallest number with v'(z9) = 0;
otherwise (i.e., v(x) is strictly increasing) let o = 1. We have that v(z) is strictly increasing on
[0, z9] and constant on [zg, 1]. Let vg = v(zp). Following Equation 14 the social welfare of lottery

L is
SWy = / u(x) d:v—/ /v(w) dvd:v—/ / dvdx—i—/m / (0)dodx
— /0 p(® vl(v >dv+/ovo<p()/modx>dv
= [ @)oo @0+ [ o) (10— o
/0 pla)(ao o) (a)do + | " p(@)(1 - z0) (z)dx
- /O p(@)(1 - 2)0/ (2)da.

o

Similarly, the social welfare of the randomized assignment can be written as

SW, = / Bu(z dq:—/ / dedx—/ / dedm+/ / Bdvdx
0 x0
/ / dedv—i—/ /Bda:dv—/ B(zo — v () dv—l—/ B(1 — zp)do
zo

/ Blzo — o) (x )da:+/0 B(1 — 20)/(« )d:c:/OmOB(l—a:)v'(x)da:.

To prove SW,. — SWp, > 0, below we first show that p(x) is non-decreasing. To do so, again notice
that p(z) maximizes the expected utility of . Thus for any two patients z1 < z2, we have

u(z1) = p(z1)(v(z1) — wip(z1))) = p(z2)(v(z1) — wip(r2)))
and
u(wz) = p(x2)(v(z2) — w(p(x2))) = p(z1)(v(z2) — w(p(21))).

Thus p(x2)(v(ze) — v(x1)) > p(z1)(v(z2) — v(x1)). If V(X9
already said, p(z) only depends on v(z)), otherwise p(x2)
non-decreasing.

) = v(z1) then p(x2) = p(x1) (as we
> p(x1). That is, the function p(z) is
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As L is feasible, we have fol p(z)dzr = B. Since v(z) is constant on [xo, 1], so is p(x). Therefore
p(zo) > B. Accordingly, there exists zp € [0, z¢] such that p(z) < B for all x < zp, and p(z) > B
for all x > . Thus we have

SW, — SW;, = /OmO(B — p(ﬂ?))(l — x)vl(x)dx

_ /xB(B — ()1 — 2) (2)dx + /xO(B — () (1 — 2 (2)da
0

B

Notice that the value of p(xp) does not affect the value of the integration, thus without loss of
generality we assume p(zp) = B.

Again because v'(z) is non-negative and non-increasing, for any = < xp, we have (1 —x)v'(z) >
(1 —xp)v(xp) > 0. Because B — p(z) > 0 for all z < xp, we have

(B = p(2))(1 = 2)v'(2) = (B - p(x))(1 - zp)v(z5).

Similarly, for any > xp, we have 0 < (1 — 2)v'(z) < (1 — zp)v'(zp) and B — p(x) < 0, which
again implies

(B = p(2))(1 = 2)v'(2) = (B - p(x))(1 - zp)v(z5).
Thus

zo

SW, —SWr > /OIB(B —p(x))(1 —zp)v (zp)dx —1—/ (B —p(x))(1 — x2p)v (vp)dz

B
Z0o

= (1—ap)V'(zB) /0 (B — p(x))dz.

Following the budget constraint we have

1 o zo
/0 p(z)dx = /0 p(z)dr + p(zo)(1 —x0) = B = /0 Bdx 4+ B(1 — xo),

and thus

/0 (B~ p(e))dz = (p(xo) — B)(1 — o).

Therefore
SW, — SWr, > (1 —xp)v (zp)(p(zo) — B)(1 — z0) > 0,

where the second inequality is because x5 < 1, v'(zp) > 0, p(x¢) > B, and zg < 1.
In sum, no feasible lottery can generate more social welfare than the randomized assignment,
and Theorem 6 holds. O

Remark 4. Notice that the analysis above holds as long as (1 — x)v'(x) is non-increasing. Thus
the randomized assignment is optimal compared with any lottery even for some convex valuation
function, such as v(z) = e*. It would be interesting to fully characterize the condition under which
the randomized assignment is optimal.
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