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Abstract

We analyze the complexity of the Walk on Spheres
algorithm for simulating Brownian Motion in a domain
Ω ⊂ Rd. The algorithm, which was first proposed in the
1950s, produces samples from the hitting probability
distribution of the Brownian Motion process on ∂Ω
within an error of ε. The algorithm is used as a building
block for solving a variety of differential equations,
including the Dirichlet Problem.
The WoS algorithm simulates a BM starting at a point
X0 = x in a given bounded domain Ω until it gets ε-
close to the boundary ∂Ω. At every step, the algorithm
measures the distance dk from its current position Xk to
∂Ω and jumps a distance of dk/2 in a uniformly random
direction from Xk to obtain Xk+1. The algorithm
terminates when it reaches Xn that is ε-close to ∂Ω.
It is not hard to see that the algorithm requires at least
Ω(log 1/ε) steps to converge. Only partial results with
respect to the upper bound existed. In 1959 M. Motoo
established an O(log 1/ε) bound on the running time
for convex domains. The results were later generalized
for a wider, but still very restricted, class of planar and
3-dimensional domains by G.A. Mikhailov (1979). In
our earlier work (2007), we established an upper bound
of O(log2 1/ε) on the rate of convergence of WoS for
arbitrary planar domains.
In this paper we introduce energy functions using New-
ton potentials to obtain very general upper bounds on
the convergence of the algorithm. Special instances of
the upper bounds yield the following results for bounded
domains Ω:

• if Ω is a planar domain with connected exterior, the
WoS converges in O(log 1/ε) steps;

• if Ω is a domain in R3 with connected exterior, the
WoS converges in O(log2 1/ε) steps;

• for d > 2, if Ω is a domain in Rd, the WoS converges
in O((1/ε)2−4/d) steps;
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• for d > 3, if Ω is a domain in Rd with connected
exterior, the WoS converges in O((1/ε)2−4/(d−1))
steps;

• for any d, if Ω is a domain in Rd bounded
by a smooth surface ∂Ω, the WoS converges in
O(log 1/ε) steps.

We also demonstrate that the bounds are tight, i.e. we
construct a domain from each class for which the upper
bound is exact. Our results give the optimal upper
bound of O(log 1/ε) in many cases for which only a
bound polynomial in 1/ε was previously known.

1 Introduction

Brownian Motion (BM) is the most important model
of randomized motion in Rd. It is the simplest (but,
in a sense, generic) example of a continuous diffusion
process. BM has found an astonishing number of
application to diverse areas of Mathematics and Science,
including Biomathematics, Finance, Partial Differential
Equations, and Statistical Physics [5, 8, 10, 15, 16].
Because of the ubiquity of BM, its effective simulation
provides a way to efficiently solve a variety of problems,
such as computation of Conformal Maps, Tomography,
and Stochastic PDEs. One of the main ways in which
simulations of BM are used is to study its first hitting
probabilities with respect to some stopping conditions.
A particularly interesting stopping condition is of hit-
ting the boundary of some topologically open bounded
connected domain Ω. For any starting point x the har-
monic measure hx on ∂Ω is given by the hitting point
distribution. In many of the BM’s applications, it is
enough to obtain information about the harmonic mea-
sure, more specifically, to efficiently sample from it.
One of the immediate applications of the ability to
sample from harmonic measures is solving the Dirichlet
problem in Rd. The Dirichlet problem on a domain Ω ⊂
Rd with continuous boundary condition f : ∂Ω → R is
the problem of finding a C2-smooth function u : Ω → R
continuous up to the boundary ∂Ω satisfying

(1.1)
{

∆u(x) = 0 x ∈ Ω
u(x) = f(x) x ∈ ∂Ω

In other words, finding a harmonic function u subject
to the boundary conditions f . By the celebrated



Kakutani’s Theorem [7, 6], the value of u at x ∈ Ω
is exactly the expected value of f with respect to the
harmonic measure hx on ∂Ω: u(x) = Ehx(z)[f(z)].
In the present paper we study the amount of time
it takes to sample from the harmonic measure with
precision ε using the Walk on Spheres algorithm –
the simplest and most commonly used algorithm for
sampling from the harmonic measure.

1.1 The Walk on Spheres algorithm The Walk
on Spheres (WoS) algorithm was first proposed in 1956
by M. Muller in [14]. In his paper, the method was
applied to the solution of various boundary problems
for the Laplace operator, including the Dirichlet prob-
lem. Logarithmic running time of the process Xt was
established for convex domains by M. Motoo in [13]
and was later generalized for a wider, but still very re-
stricted, class of planar and 3-dimensional domains by
G.A. Mikhailov in [11]. See also [4] and [12] for ad-
ditional historical background and the use of the algo-
rithm for solving other types of boundary value prob-
lems.
In our earlier work [1], we established polylogarithmic,
but not logarithmic, upper bounds on the rate of con-
vergence of WoS for planar domains, and for a restricted
class of higher-dimensional domains. Unfortunately, the
techniques of [1] do not generalize well to general do-
mains in higher dimensions.
Our present results subsume all prior work on the rate of
convergence of the WoS. We introduce an easily verified
geometric condition on the domain which provides tight
bounds for the rates of convergence. In particular, the
optimal logarithmic rate of convergence is established
for all domains whose boundary is a smooth hypersur-
face.
Let us now define the WoS. We would like to simulate a
BM in a given bounded domain Ω until it gets ε-close to
the boundary ∂Ω. Of course one could simulate it using
jumps of size δ in a random direction on each step, but
this would require O(1/δ2) steps. Since we must take
δ = O(ε), this would also mean that the process may
take O(1/ε2) steps to converge.
The idea of the WoS algorithm is very simple: we do
not care about the path the BM takes, but only about
the point at which it hits the boundary. Thus if we are
currently at a point Xn ∈ Ω and we know that

d(Xn) := d(Xn, ∂Ω) ≥ r,

i.e. that Xn is at least r-away from the boundary, then
we can just jump r/2 units in a random direction from
Xn to a point Xn+1. To justify the jump we observe
that a BM hitting the boundary would have to cross

the sphere

Sn = {x : |x−Xn| = r/2}

at some point, and the first crossing location Xn+1 is
distributed uniformly on the sphere. There is nothing
special about a jump of d(Xn)/2 and it can be replaced
with any β d(Xn) where 0 < β < 1.
Let {γn} be a sequence of i.i.d. random variables each
being a vector uniformly distributed on the unit sphere
in Rd. We could take, for example, γn = Γd

n/|Γd
n|, where

Γd
n is a normally distributed d-dimensional Gaussian

variable. Then, schematically, the Walk on Spheres
algorithm can be presented as follows:

WalkOnSpheres(X0, ε)
n := 0;
while d(Xn) = d(Xn, ∂Ω) > ε do

compute rn: a multiplicative estimate on d(Xn)
such that β · d(Xn) < rn < d(Xn);
Xn+1 := Xn + (rn/2) · γn;
n := n + 1;

endwhile
return Xn

Thus at each step of the algorithm we jump at least β/2
and at most 1/2-fraction of the distance to the boundary
in a random direction. An example of running the WoS
algorithm in 2-d is illustrated on Figure 1.
As mentioned earlier, it is clear that the algorithm is
correct. Moreover, it is not hard to see that it converges
in O(1/ε2) steps. However, in many situations, this
rate of convergence is unsatisfactory. In particular, if
we wanted to get 2−n-close to the boundary, it would
take us a number of steps exponential in n. As it turns
out, in many natural situations, the rate of convergence
is polynomial or even linear in n (i.e. logarithmic in
1/ε). The object of the paper is to prove that this is
the case, and give precise condition on when the faster
convergence occurs.
While an actual implementation of the WoS would in-
volve round-off errors introduced through an imperfect
simulation, we will ignore those to simplify the presenta-
tion as they do not affect any of the main results. Thus
the problem becomes purely that of analyzing the fam-
ily of stochastic processes {Xt} and their convergence
speed to ∂Ω.

Providing the domain Ω to the algorithm It is
worth noting that the algorithm needs access to the
input domain Ω in a very weak sense. We need an oracle



Figure 1: An illustration of the WoS algorithm for d = 2: one step jump (a), and a possible run of the algorithm
for several steps (b)

distΩ(x) that satisfy the following:
(1.2)

distΩ(x) ∈




(βd(x), d(x)) if x ∈ Ω, d(x) > βε
[0, βε) if x ∈ Ω, d(x) ≤ βε
0 if x /∈ Ω

for some 0 < β < 1. Note that distΩ would also allow
us to decide both the size of the jump on step n and
whether Xn is sufficiently close to ∂Ω for the algorithm
to terminate.
If Ω is given to the algorithm as a union of squares
on a ε-fine grid, then distΩ can be computed in time
poly(1/ε). In many applications, however, this function
can be computed in time poly(log 1/ε), because we only
need to estimate the distance within a multiplicative
error of β. The precise condition for this is that
the complement set Ωc is poly-time computable as a
subset of Rd in the sense of Computable Analysis. See
for example [2, 17, 3] for more details on poly-time
computability of real sets. The vast majority of domains
in applications satisfy this condition.
Thus, in cases when the domain Ω is sufficiently nice
for Ωc to be poly-time computable, the rate of conver-
gence of the WoS becomes the crucial component in the
running time of its execution. In particular, depend-
ing on whether the rate of convergence is poly(1/ε) of
poly(log 1/ε) it could take time that is either exponen-
tial or polynomial in n to sample points that are 2−n-
away from ∂Ω.

1.2 Results To state the results precisely we will
need a somewhat technical notion of α-thickness. We
will see that this condition is naturally satisfied for
many interesting classes of domains. Intuitively, a d-
dimensional domain is α-thick, if any neighborhood of
any point x on the boundary ∂Ω contains a (d − α)-
dimensional set Ax 3 x in the complement of Ω. Thus

the “nicer” ∂Ω is the smaller is α. As we will see, smaller
α indeed translates directly to faster convergence of
the WoS. The formal definition of α-thickness involves
measures:

Definition 1. A domain Ω ⊂ Rd is said to be α-thick
0 ≤ α ≤ d if there exists a constant c > 0 such that for
every x ∈ ∂Ω there is a Borel measure µx which satisfies
the following conditions:

1. supp(µx) ∩ Ω = ∅, or equivalently µx(Ω) = 0;

2. for any y ∈ Rd and r > 0, µx(B(y, r)) ≤ rd−α;

3. for any 1 > r > 0, µx(B(x, r)) ≥ c · rd−α.

We call the constant c the thickness of the domain Ω.
It is not hard to see that the property of α-thickness is
monotone: an α-thick domain is α′-thick for α < α′ ≤ d.
The class of α-thick domains is very rich, even for
specific constant values of α. In particular we have the
following interesting special cases.

Claim 1.

1. All d-dimensional domains are d-thick;

2. all bounded d-dimensional domains Ω such that the
complement Ωc is connected are d− 1-thick.

3. all convex domains are 0-thick;

4. all domains Ω that are bounded by a smooth hyper-
surface ∂Ω are 0-thick.

Proof. The first statement simply follows by placing a
δ-measure µx({x}) = 1 at x.
To prove the second statement, consider a measurable
function fx : [0,∞) → Ωc such that |x − fx(r)| =



r. Existence of such a function follows from the
connectedness of Ωc 3 x by a standard topological
argument. Define the measure µx as

µx(B) =
1
2
m1(f−1

x (B)),

where m1 is the standard Lebesgue measure on [0,∞).
Let y ∈ Rd with |y − x| = a and r > 0, then

f−1
x (B(y, r)) ⊂ [a− r, a + r],

and hence µx(B(y, r)) ≤ r. On the other hand, for each
r > 0,

µx(B(x, r)) =
1
2
m1(f−1

x (B(x, r))) =
1
2
m1([0, r)) =

1
2
r.

To prove the third and the fourth claim, we just take
µx to be a scaled d-dimensional Lebesgue measure
restricted to the complement of Ω.

We are now ready to state the main theorem.

Theorem 1.1. Let Ω be an open, bounded α-thick do-
main in Rd. Then the expected rate of convergence of
the WoS from any x ∈ Ω until termination at distance
< ε to the boundary is given by the following table:

(1.3)

Rate of convergence
α < 2 O

(
log 1/ε

)
α = 2 O

(
log2 1/ε

)

α > 2 O
(
(1/ε)2−4/α

)

The O(·) in the expressions above depends on the dimen-
sion d, on α, on the thickness constant c from Definition
1 and on β > 0 from the definition of the WoS. It does
not depend directly on Ω.
Moreover, the rates of convergence above are tight. That
is, for each α there is a family of α-thick domains Ωα

n

with some thickness c, such that the rate of convergence
with ε = 1/n on Ωα

n is asymptotically given by the
formulas in (1.3).

The rate of convergence cannot be better than
O(log 1/ε) since at each step of the WoS, the distance
of Xt to the boundary ∂Ω decreases by at most a mul-
tiplicative constant. An intuitive explanation to the
phase transition phenomenon occurring at α = 2, is that
a BM in Rd almost surely “misses” sets of co-dimension
> 2, while hitting sets of co-dimension ≤ 2 with positive
probability.
It is worth noting that the main result in [1] is the
special case α = d = 2 of the theorem.
The following corollaries are implied directly by the
main theorem and Claim 1.

Corollary 1.1.

1. For any planar domain, the WoS converges in
O(log2 1/ε) steps;

2. for any planar domain with connected exterior, the
WoS converges in O(log 1/ε) steps;

3. for any d ≥ 3, the WoS converges in O((1/ε)2−4/d)
steps;

4. for any 3-dimensional domain with connected exte-
rior, the WoS converges in O(log2 1/ε) steps;

5. for any d ≥ 4, and for any d-dimensional do-
main with connected exterior, the WoS converges
in O((1/ε)2−4/(d−1)) steps;

6. for any domain bounded by a smooth hypersurface,
the WoS converges in O(log 1/ε) steps.

2 Upper bounds: energy function

2.1 Energy Function of optimal growth The
heart of the proof of the upper bounds in Theorem
1.1 is the construction of a subharmonic function with
optimal growth at the boundary, the Energy Function
U on Ω. We will construct U(x) so that it is “small” in
the interior of Ω, and grows to ∞ as x approaches the
boundary ∂Ω. The α-thickness of the domain allows us
to establish that the value of U(Xt) grows in expectation
as the WoS progresses. Thus after a certain number of
steps U(Xt) will be large in expectation which would
imply that Xt is close to ∂Ω with high probability.
The construction of the function is based on the notion
of a Riesz potential. For a finite Borel measure µ on Rd,
and α < d, the α-Riesz potential of the measure µ is
defined by

Uµ
α (x) =

1
d− α

∫
dµ(z)

‖z − x‖d−α
.

For α = d, the d-Riesz potential is defined by

Uµ
α (x) =

∫
log

1
‖z − x‖ dµ(z).

The value Uµ
α (x) = ∞ is allowed when the integral

diverges.
An important special case is the case of α = 2, the
so-called N ewton potential. We will denote Uµ

2 simply
by Uµ. In this case the expression under the integral
is harmonic in Rd. It is well known (e.g. see [9]) that
the function Uµ is superharmonic on Rd, and harmonic
outside of supp µ.
More generally, for 0 < α < 2, the function Uµ

α is
subharmonic outside of suppµ.



The following important technical identity, which easily
follows from Fubini’s Theorem and substitution, relates
the local behavior of the measure µ and the growth of
its potential Uµ

α . For α < d, we have

(2.4) Uµ
α (y) =

1
d− α

∫ ∞

0

µ(B(y, t−1/(d−α))) dt =
∫ ∞

0

µ(B(y, r))
rd−α+1

dr,

and for α = d,

(2.5) Uµ
α (y) =

∫ ∞

−∞
µ(B(y, e−t)) dt =

∫ ∞

0

µ(B(y, r))
r

dr

Let us now fix an α-thick domain Ω ⊂ B(0, 1) ⊂ Rd. Let
us consider the set M of all Borel measures µ supported
inside B(0, 2) and outside of Ω (i.e. µ(Ω) = 0),
satisfying the following condition:

(2.6) for any y ∈ Rd and r > 0, µ(B(y, r)) ≤ rd−α

Let us now introduce the Energy Function U(y). Recall
that Uµ(y) := Uµ

2 (y).

(2.7) U(y) :=
{

supµ∈M Uµ
α (y), when α ≤ 2

supµ∈M Uµ(y), when α ≥ 2.

Let us summarize the properties of U(y) in the following
claim, proved in the full version of the paper. The
proof makes use of identities (2.4) and (2.5). Recall
that d(y) = dist(y, ∂Ω).

Claim 2. Let Ω be an α-thick domain. Then

1. U(y) is subharmonic in Ω.

2. For α ≤ 2, U(y) ≤ log
2

d(y)
for all y ∈ Ω.

3. For α > 2, U(y) ≤ 1
α− 2

d(y)2−α for all y ∈ Ω.

Let Xt be the WoS process initiated at some point
X0 = y ∈ Ω. Let us define a new process Ut = U(Xt),
the value of the energy function at the t-th step of the
process. Note that because U is subharmonic , Ut is a
submartingale, that is E[Ut+1|Ut] ≥ Ut.
For the rest of the section let n = 1/ε. Claim 2 immedi-
ately implies that a large value of Ut will guarantee the
closeness to the boundary. More specifically,

Claim 3. For α ≤ 2, if Ut > log 2n then d(Xt) < 1/n.
For α > 2, Ut > (α− 2)nα−2 implies d(Xt) < 1/n.

The proof of Theorem 1.1 relies on finer lower bounds
on the function U , which would guarantee the optimal
rate of boundary convergence. These bounds depend
heavily on the value of α. We outline the ideas of the
proof in the next sections, with the full details deferred
to the full version of the paper.

2.2 Logarithmic convergence: the case α < 2.
At the heart of the proof for this case lies the following
strong estimate on the behavior of the Riesz potentials
near the boundary.

Lemma 2.1. For any α < 2 and c > 0, there exists a
constant δ, such that the following holds.
Let Ω be an α-thick domain in Rd with thickness c. Let
y ∈ Ω and x ∈ ∂Ω be the closest point to y. Let µ ∈M
(recall that M is the class of measures defined in the
previous section).
Then either
(2.8)
U(z) > Uµ

α (z)+1 whenever δ/4·d(y) < |z−x| < δ ·d(y).

or

(2.9) µ(B(y, 2d(y))) ≥ δd(y)d−α

The lemma is established in the full version of the paper.
Note that after k = O(| log δ|) steps of the WoS process,

(2.10) δ/4 · d(Xt) < |Xt+k − x| < δ · d(Xt)
with a certain probability p,

where x is the point of ∂Ω that is closest to Xt, and
p > 0 depends only on β and the dimension d.
Let us fix Xt and take the measure µ ∈M maximizing
the value of Uµ

α (Xt). Such a measure exists by a
compactness argument. By the preceding observation,
in the first case in Lemma 2.1, the subharmonicity of
U implies that the expectation of Ut+k, conditioned on
Ut, will increase by some definite constant.
On the other hand, using the α-thickness of Ω, one can
see that the Laplacian of Uµ

α is large near the point
Xt in the second case of Lemma 2.1. Thus, since
large Laplacian leads to a fast build-up of mean values,
we have the above-mentioned increase by a constant
after the first step. Thus we arrive to the following
estimate, which shows that Ut grows at least linearly in
expectation.

Lemma 2.2. There are constants L and k, depending
only on c, β, and α, such that

E[(Ut+k − Ut)|Ut] > L.

A detailed proof of the lemma can be found in the full
version of the paper.



Lemma 2.2 implies that E[Ut] > tL/k + U0. Since
d(Xt) ≥ (1− β)td(X0), Claim 3 implies that Ut ≤ U0 +
t| log(1−β)|+ log 2. This implies that Ut > U0 + tL/2k
with probability at least P , where P depends only on
β. This, together with Claim 3 implies the necessary
upper bound in the case α < 2.

2.3 Polylogarithmic convergence: the case α =
2. In the case α = 2 the steady linear growth of Ut given
by Lemma 2.2 no longer holds. In fact, the only thing
that generally holds in this case is the submartingale
property E[Ut+1|Ut] ≥ Ut. We are able to overcome this
difficulty, by showing that the submartingale process
{Ut} has a deviation bounded from below by a constant
at every step. To this end it suffices to show that Ut

can grow by some η with a non-negligible probability.
We use the following estimate on the energy function
(established in the full version of the paper).

Lemma 2.3. There exists a constant δ, dependent only
on the thickness c, such that the following holds. Let
Ω be a 2-thick domain. Let y ∈ Ω and x ∈ ∂Ω be the
closest point to y. Then

(2.11) U(z) > U(y) + 1 whenever |z − x| < δ · d(y).

Since the function U is subharmonic, observation (2.10)
implies the following estimate (we defer to the full
version of the paper for a detailed proof).

Lemma 2.4. Let Ω be a 2-thick domain in Rd. There
are constants k and L, depending only on the thickness
c, the jump ratio β, and the dimension d, such that

E[(Ut+k − Ut)2|Ut] > L.

The derivation of the upper bound on the rate of
convergence from the Lemma is pretty standard, and
is established in the full version of the paper.

2.4 Polynomial convergence: the case α > 2.
For the case α > 2, the required converse to Claim 3 is
very simple.

Lemma 2.5. For α > 2, and an α-thick domain Ω in
Rd with the thickness c,

U(y) ≥ K · d(y)2−α

for all y ∈ Ω. Here the constant K = K(c, α) depends
only on c and α.

Proof. Let x be the closest to y point at ∂Ω, and
let µ = µx be the corresponding measure from the
definition of the α-thick domains. Then, by the identity

(2.4) and since B(x, r) ⊂ B(y, r + d(y)),

(2.12) U(y) ≥ Uµ
2 (y) =

∫ 2

d(y)

µ(B(y, r))
rd−1

dr ≥

c2α−d

∫ 2

2d(y)

t1−α ≥ K · d(y)2−α.

The idea of the proof of Theorem 1.1 in this case is now
as follows. When the WoS is far from the boundary ∂Ω
it makes fairly big steps and when it is close it makes
small steps. There are not too many big steps because
the number of big steps of length > ε confined to B(0, 1)
is bounded by O(1/ε2). On the other hand, there are
not too many small steps, because a small step means
that the WoS is very close to ∂Ω, and should converge
before an opportunity to make many more steps.
More precisely, the number of “big” jumps is bounded
by the following claim (we defer to the full version of
the paper for a proof).

Claim 4. Let N(ε, T ) be the number of the jumps in
the WoS process before the time t which are bigger then
ε, i.e.

N(ε, T ) = #{t ≤ T | |Xt −Xt−1| ≥ ε}.

Then

P
[
N(ε, T ) >

4
ε2

]
< 1/4.

To bound the number of small jumps, we denote by
R0 ⊂ Ω the 1/n-neighborhood of ∂Ω, and more gener-
ally, by

Rk := {x ∈ Ω : 2k−1/n < d(x, ∂Ω) ≤ 2k/n}

(see Figure 2(b)).
Using Lemma 2.5, we can see that

Claim 5. Denote by vk the number of visits of Xt

to Rk before the time T when Xt first hits the 1/n-
neighborhood of the boundary ∂Ω,

vk = #{t < T : Xt ∈ Rk}.

Then
P[vk > C2 · 2k(α−2)M ] < 1/4M ,

for some constant C2 = C2(c, d, α, β) and for any M >
1.

As shown in the full version of the paper, if we select k0

such that 2k0 ≈ n2/α in Claim 5, sum up the values of vk

for k ≤ k0, and than let ε = 2k
0/n in Claim 4, we obtain

the required upper bounds on the rate of convergence
for the case α > 2.



3 Lower bounds: examples

In this section we construct examples of α-thick domains
for which the bounds in Theorem 1.1 are tight. The
main idea of the construction is as follows. We take a
domain A in Rd, such as the unit ball or a cylinder. We
remove a “thin” subset of points C from A to obtain
Ω = A \ C. The set C can be thought of as the subset
of the grid (γZ)d, for some small γ > 0. The set C
will be chosen so that it “separates” the origin from
the boundary of A. We set n = 1/ε. We choose γ so
that the probability of the WoS originated at 0 hitting
a 1/n-neighborhood of C before hitting the boundary
of A is < 1/2 (this means that C is “thin”). Hence,
with high probability, the WoS will reach ∂A before
terminating. However, in this case the WoS will have
to “pass through” the set C, where its step magnitudes
are bounded by γ. This will, in turn, yield an Ω(1/γ2)
bound on the convergence time. The analysis is more
intricate in the case when α = 2. In the case when
α > 2 is not an integer, a slight modification to this
construction is needed, as will be described below.

3.1 Proof of the lower bound in the case α > 2
In this section we will give an example of a “thin” α-
thick domain Ωα for which the WoS will likely take
Ω(n2−4/α) steps to converge within ε = 1/n from the
boundary ∂Ωα. The domain Ωα will reside in Rd, where
d = dαe ≥ 3. It is easy to see that the examples in
higher dimensions d′ > d can be constructed from Ωα

by simply multiplying Ωα by[−1, 1]d
′−d.

The set

Ωα :=
(
B(0, 1)d−1 × [−1, 1]

)
\ S

is comprised of a d-dimensional cylinder with a set of
points S removed. Here B(0, 1)d−1 denotes the unit ball
in Rd−1. We take A to be the “middle 1/3” shell of the
d-dimensional cylinder:

A = {z ∈ Rd−1 : 1/3 < |z| < 2/3}×
{x ∈ [−1, 1] : 1/3 < |x| < 2/3}.

Let 0 < γ ¿ 1 be the grid size that will be selected
later. We consider the set Aγ of gridpoints in A.

Aγ = (γZ)d ∩A.

Let 0 ≤ η := d−α < 1. Denote by Cη the η-dimensional
Cantor set in the interval [0, 1]. It is obtained by
removing the middle λ-fraction of the interval, then
removing the middle λ-fraction of each subinterval etc.
For the set Cη to be η-dimensional, we choose λ so that

η =
log 2

log 2− log(1− λ)
.

In the special case when η = 0, we set C0 = {0}. We
now define the set S:

S := Aγ + {0} × γCη.

In other words, S is obtained by attaching a γ-scaled
copy of Cη to each gridpoint of Aγ . This completes the
definition of the set Ωα =

(
B(0, 1)d−1×[−1, 1]

)\S. The
intuition that each point in ∂Ωα has an η-dimensional
set in Ωc

α attached to it is captured by the following
claim.

Claim 6. There is a universal constant c ≥ 1/16 such
that for every γ, the set Ωα is α-thick with the thickness
c.

Proof. The statement is trivial in the case α = d (and
β = 0). In all other cases, let x be a point in ∂Ωα. We
will construct µx as in Definition 1. The construction
is obvious if x is in the boundary of the unit ball, hence
we only need to concentrate on the case when x ∈ S.
The measure µx is supported on the fractal line Sx in S
that passes through x:

Sx := {z ∈ S : the first d− 1 coordinates of z

are identical to those of x}.
Sx is composed of Θ(1/γ) small copies of the Cantor
set Cβ . The metric µx will assign weight w0 to the two
copies that are closest to x, weight w1 to the next two
closest copies of Cβ etc. Within each copy, µx will be
the β-dimensional Hausdorff measure on Cβ scaled to
have a total weight of wi for the appropriate wi.
We choose w0 = w1 = γη/4, wi = (iη− (i−1)η)γη/4, so
that for k ≥ 1,

∑k
i=0 2wi = iηγη/2 + γη/2 ≤ (iγ)η. It is

not hard to see that the resulting measure µx satisfies
the conditions of Definition 1 with c = 1/16.

The following two claims assert that for an appropri-
ately chosen γ, the WoS originated at the origin 0 ∈ Rd

and terminated at the 1/n neighborhood of ∂Ωα is likely
to hit the boundary of the external cylinder (as op-
posed to the neighborhood of S), and is likely to spend
Ω(n2−4/α) steps getting there.

Claim 7. If γ > 8n2/α−1 then a WoS originated at 0
and terminated at the 1/n-neighborhood of the boundary
∂Ωα will hit the boundary of the cylinder B(0, 1)d−1 ×
[−1, 1] with probability at least 3/4.

Proof. It is not hard to see that we can choose a finite
subset P of points in S such that |P | < 2γ−α · nβ , and
for every x such that d(x, S) < 1/n there is a p ∈ P such
that |x− p| < 2/n. Consider the harmonic function

(3.13) Φ(x) :=
∑

y∈P

1
|x− y|d−2

> 0.



Figure 2: An illustration the sets Ω, A and B (a), and a possible sequence of jumps in the processes {Yt} and
{Zt} (b)

Since the function Φ is harmonic, its application to the
WoS process Xt gives a martingale. Hence if T is the
stopping time of the process,

E[Φ(XT )] = Φ(X0) = Φ(0) < 3d−2 · |P | < 6γ−α · nη.

On the other hand, if d(XT , S) < 1/n, then there is a
y ∈ P with |XT − y| < 2/n, and

Φ(XT ) >= 1/|y −XT |d−2 > (n/2)d−2.

Hence the probability of XT being near S is bounded
by

E[Φ(XT )]
(n/2)d−2

<
6γ−α · nη

(n/2)d−2
<

2d+1γ−α

nα−2
<

8αn2

4(γn)α
< 1/4.

The last inequality follows from the condition on γ.

Claim 8. There is a universal constant δ > 0 such that
for γ as above, with probability at least 1/2 the WoS
takes at least δ(1/γ)2 steps to reach the boundary of the
cylinder B(0, 1)d−1 × [−1, 1].

The proof is done analogously to the proof of Claim 11
below.
Hence the expected number of steps is at least

δ

2
·
(

1
8n2/α−1

)2

= Ω(n2−4/α),

which completes the proof of the lower bound for
Theorem 1.1 in the case when α > 2.

3.2 Proof of the lower bound in the case α = 2
We will now give an example of a two dimensional
domain Ω such that the expected convergence time of
the WoS to a O(1/n)-neighborhood of ∂Ω is Ω(log2 n).
By taking the d-dimensional domain Ωd = Ω×Rd−2 for
d > 2, we obtain a lower bound of Ω(log2 n) for 2-thick
domains in Rd, proving the lower bound for α = 2 in
Theorem 1.1.
The domain Ω will consist of the unit disc in R2 with
O(log n) holes “poked” out of it in a grid formation.
More specifically, let γ = 4/ log1/2 n. We consider
the grid Γ = γZ × γZ ⊂ R2. We take Ω to be
the unit disc with points from Γ removed from the
“middle third” annulus of the disc. Let Ω = B(0, 1) \(
(B(0, 2/3) \B(0, 1/3))∩Γ

)
. The set Ω is illustrated on

Fig. 2(a).
We will show that a WoS originated at the origin X0 = 0
would require an expected time of Ω(log2 n) to converge.
It is immediate to see that the same lower bound holds
for any point X0 ∈ B(0, 1/3). We first observe the
following:

Claim 9. With probability at least 7/8, a WoS origi-



nated at X0 = 0 that runs until d(Xt) < 1/n terminates
near the unit circle (and not near one of the holes).

Proof. Let {ai}k
i=1 = B(0, 1)\Ω be the set of holes in Ω.

Define the harmonic function Φ(z) =
∑k

i=1 log(2/|z −
ai|).
It is clear that Φ(z) > 0 for all z ∈ B(0, 1). For any
point u in the 1/n-neighborhood of any of the holes,
Φ(u) > log n. On the other hand, Φ(0) < k · log 6 <
2/γ2 = (log n)/8.
If Xt is the WoS process with X0 = 0 terminated at time
T when d(XT , ∂Ω) < 1/n, then Φ(Xt) is a martingale.
Hence,

(log n)/8 > Φ(X0) = E[Φ(Xt)] >

P[Xt near a hole] · log n.

Hence the probability that the WoS terminates near a
hole is less than 1/8.

For simplicity, we will assume that at every step of the
process the WoS jumps exactly half way to the boundary
∂Ω.
To facilitate the analysis we replace the WoS process
Xt on Ω with the following process Yt. It evolves in
exactly the same fashion as Xt, except when Yt is closer
than 1/n to one of the holes in Ω. In this case, instead
of terminating, the process makes a jump of 1/n in a
direction selected uniformly at random. The process
Yt is guaranteed to terminate near the unit circle. We
denote the termination time by T . Further, we set
Yt = YT for t > T . Note that if the process Xt does
not terminate near one of the holes, then the process Yt

coincides with Xt. Claim 9 implies that this happens
with probability at least 7/8:

Claim 10. P[Xt does not coincide with Yt] < 1/8.

We define two regions A and B, B ⊂ A ⊂ Ω. We take
A to be the union of discs with radius r = γ/4 around
the holes in Ω. We take B to be the union of discs with
radius r/2 around the same holes. The sets Ω, A and
B are illustrated on Fig. 2(a).
Let time t0 be the first time with |Yt| > 1/2. Let t′

be the first time afterward with either |Yt| > 2/3 or
|Yt| < 1/3. Our goal is to show that with probability at
least 3/4, |t0−t′| = Ω(log2 n). We define a subprocess Zt

of Yt as follows. Let {si}k
i=0 be a subsequence of times

s between t0 and t′ such that Ys /∈ A. We set Zi = Ysi .
We further define ∆i = Zi − Zi−1. An instance of the
process Zi is illustrated on Fig. 2(b). Since Yt is a
martingale, and Zi is defined by a stopping rule on Yt,
Zi is also a martingale, and

(3.14) E[∆i | ∆1, ∆2, . . . , ∆i−1] = 0.

In addition, it is not hard to see from the definition of
Yt that |∆i| < 4/ log1/2 n for all i. Our first claim is
that the number k of steps Zi is Ω(log n).

Claim 11. P[k < 10−4 log n] < 1/8.

Proof. Denote ` = 10−4 log n. Then, by (3.14),

E[(Z0 − Z`)2] = E[(∆1 + ∆2 + . . . + ∆`)2] =

∑̀

j=1

E[∆2
j ] +

∑

1≤i<j≤`

E[∆i ·E[∆j |∆i]] =

∑̀

j=1

E[∆2
j ] < ` · 16/ log n < 1/288.

On the other hand, by definition, |Z0 − Zk| > 1/6, and
(Z0 − Zk)2 > 1/36. Hence,

P[k ≤ `] = P[Z` = Zk] < (1/288)/(1/36) = 1/8.

Thus the number of steps the process Zt takes is at
least 10−4 log n w.p. > 7/8. The process Yt consists
of the steps of the process Zt plus, in addition, steps
the process takes within the region A. We claim that
once the process Yt enters the region A, it is expected
to spend Ω(log n) steps there. Moreover, the following
holds.

Claim 12. Let η > 2. Then there is a θ > 0 such that
whenever Yt ∈ A, if s > t is the first time, conditioned
on Yt such that Ys /∈ A, then

(3.15) P[s− t > θ log2 n] > η/ log n,

for sufficiently large n.

Proof. Denote the hole in Ω that is closest to Yt by x.
Given that Yt ∈ A, there is some fixed probability p > 0
that Yt+1 ∈ B. In other words, |Yt+1 − x| < r/2 = γ/8.
Consider the harmonic function

Φ(z) = log(r/|x− z|).
Let t′ > t + 1 be the first time such that either Yt′ /∈ A
(and thus t′ = s), or |Yt′−x| < n−p/(5η). If Yt′ /∈ A, then
Φ(Yt′) < 0. In the other case, Φ(Yt′) < p log n/(4η).
Since t′ is a stopping time, the optional stopping time
theorem applied to the martingale Φ(Yt+τ ) combined
with the estimate Φ(Yt) > 1/2, gives

P[|Yt′ − x| < n−p/(5η)] > (1/2)/(p log n/(4η)) >

2η/(p log n).

To complete the argument, we claim that assuming
|Yt′ − x| < n−p/(5α), it will take the process another



Ω(log2 n) steps to escape A with probability at least
1/2. We consider the process φτ = Φ(Yt′+τ ) stopped at
time τ0 when either Yt′+τ0 escapes A, or gets closer than
distance 1/n from x. The process φτ is a martingale.
Moreover, it is not hard to see that |φ0 − φτ0 | >
p log n/(6η), and |φi − φi+1| < 1 for all i. These two
facts imply that

E[τ0] >

τ0∑

i=1

E[(φi − φi−1)2] = E[(φτ0 − φ0)2] >

(p log n/(6η))2 = p2 log2 n/(36η2).

Tschebyshev inequality implies that θ = p2/(72η2)
satisfies the statement of the claim.

By Claim 11 we know that except with probability
< 1/8 the walk will contain at least Ω(log n) visits to A.
It remains to use Claim 12 to show that at least one of
these stays must be Ω(log2 n) long. Recall that T is the
stopping time of the process YT , and k is the number of
steps Yt takes outside of A.

Claim 13. Let α1 = 10−4 from Claim 11. There is a
constant α2 > 0 such that

(3.16) P[k > α1 log n and T < α2 log2 n] < 1/8.

We defer the proof of the lemma to the full version of
the paper.
Claims 10, 11 and 13 imply the following.

Claim 14. Let Xt be the WoS process on the set Ω with
X0 = 0. Let T ′ be its termination time. Then

P[T ′ > α2 log2 n] > 5/8,

where α2 > 0 is the constant from Claim 13. In
particular, this implies that E[T ′] = Ω(log2 n).

Proof. We know that T ′ > α2 log2 n if the following
three conditions hold: (C1) the process Xt coincides
with the process Yt; (C2) the process Yt makes at least
k > α1 log n steps outside of A in the {z : 1/3 <
|z| < 2/3} annulus; and (C3) the stopping time T of Yt

satisfies T > α2 log2 n. In fact conditions (C1) and (C3)
suffice. We have P[C1] < 1/8 by Claim 10, P[C2] < 1/8
by Claim 11, and P[C2 ∩C3] < 1/8 by Claim 13. Here
C denotes the complement of an event C. Hence

P[C1∪C2∪C3] ≤ P[C1] +P[C2] +P[C2∩C3] < 3/8,

which implies that P[T ′ > α2 log2 n] > 5/8.

Claim 14 gives the lower bound for Theorem 1.1 in the
case α = 2.
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