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Abstract
Whether the information complexity of any interac-

tive problem is close to its communication complexity is
an important open problem. In this note we give an
example of a sampling problem whose information and
communication complexity we conjecture to be as much
as exponentially far apart.

1. Introduction

1.1. Basic setup: communication complexity
and information complexity

In the basic context of communication complexity,
there are two parties (terminals), Alice and Bob. Prior
to the communication, they are given a pair of inputs
(X ,Y ): Alice is given X and Bob is given Y . Depend-
ing on the context, the input pair (X ,Y ) may be drawn
from a distribution µ . In addition, the parties are given
access to a shared source of randomness, which can
be accessed without communication over the channel.
Alice and Bob need to perform a computational task
T (X ,Y ) on their inputs. We assume that they employ a
noiseless binary channel. In this note the task will be
to sample a string s from a distribution ν = νX ,Y that
depends on both players’ inputs. In the context of com-
munication complexity, Alice and Bob want to perform
T (X ,Y ) while sending as few bits as possible over the
channel. An introduction to communication complex-
ity, and to the state-of-the-art as of 1997 can be found
in [KN97].

Computation is performed by means of a protocol.
A protocol is a sequence of functions which specify the
next message to be sent (and the speaker). In a random-
ized protocol the parties in are allowed to use sources
of randomness. In the case of a sampling task, the play-
ers are allowed to communicate using the protocol; after
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the communication is over, each party outputs a sample.
We say that the task is successful if they output the same
sample, and the output sample is distributed according
to the desired distribution.

The communication complexity CC(T,0) of a task
T is the smallest number of bits that Alice and Bob need
to exchange to perform T . We say that a protocol π

solves a task T with error ε , if the output of the proto-
col on each pair (X ,Y ) of inputs is statistically ε-close
to the output prescribed by T (X ,Y ). CC(T,ε) is the
smallest number of bits that Alice and Bob need to ex-
change to perform T with error probability ≤ ε . In the
case of a sampling task, this mean that the distribution
η sampled by π(X ,Y ) satisfies ‖η−νX ,Y‖1 ≤ ε . When
error is allowed, it is often assumed to be a small con-
stant, e.g. ε = 1/10.

The communication complexity usually refers to
the worst case number of bits, although average case
communication complexity is also sometimes consid-
ered. If inputs are given by a distribution µ . the av-
erage case communication cost of a protocol π is the
expected number of bits exchanged by the protocol on
inputs (X ,Y ) ∼ µ . The average-case communication
complexity of T , CCaverage

µ (T,ε), is the expected num-
ber of bits that the best protocol needs to exchange to
solve T with error ≤ ε .

1.2. Interactive information complexity

Next we briefly discuss the notion of information
complexity. A more detailed overview and references
can be found, for example, in [Bra12b]. While com-
munication complexity is concerned with the number
of bits Alice and Bob need to exchange to perform a
task T , information complexity is concerned with the
amount of information they need to exchange irrespec-
tive of the actual number of bits transmitted in the pro-
cess. Informally speaking, the minimum amount of in-
formation that needs to be exchanged to perform T is
the information complexity of T .

For the remainder of the discussion, assume that



Alice and Bob are given a pair of inputs (X ,Y ) dis-
tributed according to a distribution µ . The have ac-
cess to public and private randomness. Let π be any
protocol. An execution of the protocol on the pair of
(random) inputs (X ,Y ) ∼ µ gives rise to the transcript
Π = Π(X ,Y ) of the protocol which is itself a random
variable. The information cost of a protocol Π is the
amount of information that the protocol reveals to Al-
ice and Bob about their input. For example, the amount
revealed to Alice – who knows X – about Y is given by
the conditional mutual information I(Y ;Π|X). Thus the
information cost of π is given by

ICµ(π) := I(Y ;Π|X)+ I(X ;Π|Y ). (1)

The task of finding the communication complexity of a
task T can be reformulated as the task of finding a low-
communication protocol for computing T . In the same
vein, we can use (1) to define the task of finding the
information complexity of T as the task of minimizing
the information complexity of the protocol for T :

ICµ(T ) := inf
π protocol performing T

ICµ(π). (2)

The operational meaning of ICµ(T ) is equal to the
scaling limit of communication complexity (the state-
ment below is slightly informal, see [BR11, Bra12a] for
further discussion):

Theorem 1 Let T n be the task of performing n inde-
pendent copies of the task T . Suppose that T allows for
some non-zero error ε > 0. Then we have:

ICµ(T ) = lim
n→∞

CCµn(T n)/n. (3)

Information complexity can be viewed as the in-
teractive analogue of Shannon’s entropy. In this con-
text, Theorem 1 can be viewed as the analogue of
Shannon’s Source Coding Theorem for interactive two-
terminal computing. In one-way communication, in
addition to the Source Coding Theorem that ties en-
tropy H(X) to the communication cost of X in the limit,
encoding schemes such as Huffman coding show that
the expected cost of transmitting a single copy of X
is ≤ H(X) + 1 – within one bit of the information-
theoretic optimum. Huffman coding can be viewed as a
very efficient scheme for compressing X (over a noise-
less channel). In the interactive setting, no such scheme
is known, and, in fact it is not clear such a scheme exists.
The problem of interactive compression can be formu-
lated as follows (cf [Bra12b, Bra12a]):

Problem 2 How close is the average case ε-error com-
munication complexity CCaverage

µ (T,ε) of T to its infor-
mation complexity ICµ(T,ε)? In particular, is it true
that

CCaverage
µ (T,ε) = O(ICµ(T,ε))? (4)

The only general result for a bound on the commu-
nication complexity C in terms of the information com-
plexity I that we currently have is of the form C < 2O(I)

[Bra12b]. This is a far cry from the linear relationship
we ask for in Problem 2. In this note we give an exam-
ple of a sampling task for which the gap may be as high
as C = 2Θ(I).

There is another viewpoint onto Problem 2. By
Theorem 1, ICµ(F,ε) is equal to the amortized com-
munication complexity of F as long as ε > 0. Thus (4)
can be rephrased as

CCaverage
µ (T,ε) = O(CCµn(T n,ε)/n)?

or, more familiarly, as

CCµn(T n,ε) = Ω(n ·CCaverage
µ (T,ε))? (5)

This latter formulation is known as the direct sum prob-
lem for distributional communication complexity. In
general, the direct sum problem asks whether solving
n copies of a problem is n times as hard as solving one
copy. It is usually clear that it is at most as hard, but
could there be savings in solving n copies in parallel?
While this question is usually formulated for T being
the task of computing a function, it also makes sense
in the context of sampling, which is what we consider
here.

2. Main construction

2.1. Background: the Greater-Than (GTn)
function

First, let us consider the problem of comparing two
n-bit numbers.

Definition 3 The Greater Than function GTn : {0,1}n×
{0,1}n → {0,1} is defined as the comparison between
the numbers x,y ∈ {0, . . . ,2n− 1} defined by the input
strings:

GTn(X ,Y ) =
{

0 if ∑
n
i=1 2n−iXi ≤ ∑

n
i=1 2n−iYi

1 otherwise

It is known that in the deterministic communication
model (when errors are not allowed), the communica-
tion complexity of GTn is Θ(n). When randomization
is allowed, one can use a noisy variant of the Binary
Search algorithm [FPRU94] to locate the first bit of dis-
agreement between X and Y in O(logn) communica-
tion, thus solving the GTn problem. This bound turns
out to be tight: Ω(logn) communication is necessary in
general for solving the GTn problem [Vio11, BW12].



We will be interested in the Ω(logn)-hardness of
GTn in the distributional setting, where inputs (X ,Y ) ar-
rive according to a distribution µ , and the parties try to
compute GT (X ,Y ) for all but an ε-fraction of inputs.
The hardness of the problem, of course, depends on µ .
For example, if µ is just the uniform distribution on
pairs of strings, then GTn is very easy, since with high
probability X and Y will differ in one of their first few
bits.

For our purposes, it is useful to explicitly men-
tion the following distribution µGT,n under which the
communication complexity of GTn is Θ(logn). A pair
(X ,Y ) is sampled as follows:

1. Sample an index k ∈ {1, . . . ,n} uniformly at ran-
dom.

2. Sample z1, . . . ,zk−1, w, xk+1, . . . ,xn, yk+1, . . . ,yn —
uniformly random bits.

3. Let X = z1, . . . ,zk−1,w,xk+1, . . . ,xn, Y =
z1, . . . ,zk−1,w,yk+1, . . . ,yn.

With the distribution µGT,n defined, we are ready to
define the sampling problem S which we conjecture to
separate information complexity from communication
complexity.

3. The sampling problem

We start by defining the sampling problem S. The
problem will use strings over an alphabet Σ of size k,
where k is a parameter. In addition, it will use a param-
eter N = 2n. The problem makes sense for any N = 2n

which is a power of 2, but for the rest of the paper we
fix N = 2n = 22k

.

Definition 4 The sampling problem S = S(k,N), where
N = 2n is defined as follows.

• Alice and Bob are given a pair of numbers
a,b∼µGT,n∈ {0, . . . ,N−1} (i.e. two n-bit numbers
that take Ω(logn) communication to compare);

• Alice is given a uniformly random function FA :
Σ2a→ Σ (which is only known to Alice);

• Independently, Bob is given a uniformly random
function FB : Σ2b+1→ Σ;

• Alice and Bob need to sample a uniformly random
string s ∈ Σ2N subject to the constraints

1. s2a+1 = FA(s1..2a); and

2. s2b+2 = FB(s1..2b+1).

In other word, s is sampled uniformly from the sub-
set S of strings which satisfy the two constraints. The
size of S, |S|= k2N−2; therefore, the KL-divergence be-
tween s and the uniform distribution on Σ2N is 2 logk.

The naı̈ve protocol π0 for S proceeds in rounds,
where in odd rounds Alice samples the next symbol
of s, and in even rounds Bob does. In rounds i 6=
2a+ 1, Alice just sends a uniformly random si ∈U Σ.
In round i = 2a + 1, Alice computes and sends si =
FA(s1..2a). This incurs the very high communication
cost of Θ(N logk) = Θ(22k

logk). However, we argue
that the information cost of π0 is only 2logk, which
is tight. Denote by µ the distribution of the inputs
a,Fa,b,Fb to S.

Claim 5 ICµ(π0) = ICµ(S,0) = 2logk.

Proof. We first note that the transcript of π0 is dis-
tributed exactly as the output s of S given a,Fa,b,Fb,
and therefore

ICµ(S,0) = ICµ(π0) = Iµ(s;a,Fa,b,Fb).

Finally,

Iµ(s;a,Fa,b,Fb) = E D(s|a,Fa,b,Fb‖s) = 2logk.

�

To separate information complexity from commu-
nication complexity for sampling problems, we need
to show that CCaverage

µ (S,ε) = ω(logk) for some small
constant ε . A general result in [Bra12b] implies that the
gap between information complexity and communica-
tion complexity can be at most exponential. We conjec-
ture, that S is, in fact, an example of such exponential
separation:

Conjecture 6 For a small constant ε > 0, such as ε =
1/10, the communication complexity

CCaverage
µ (S,ε) = kΩ(1) = 2Ω(ICµ (S,0)).

It is important to re-emphasize that our communi-
cation model allows for public shared randomness. This
difference is less important in the context of compu-
tation problems, but is significant for sampling prob-
lems, since without public randomness, even the sim-
ple task of sampling a uniformly random string from
{0,1}n would require ∼ n bits of communication.

In the next section we will briefly discuss some ob-
vious strategies for solving S using low communication,
and see why these are consistent with Conjecture 6.



4. Discussion

We start by considering two communication pro-
tocols, both of which turn out to yield communication
complexity of O(k), although in different ways.

The first protocol, π1, ignores the exact way in
which s was generated. Instead, observe that a ran-
domly selected string t ∈ Σ2N has a probability of ex-
actly 1/k of being consistent with Alice’s input (i.e. of
satisfying t2a+1 = FA(t1..2a)). Similarly, it has a proba-
bility of 1/k of being consistent with Bob’s input, and a
probability of 1/k2 of being consistent with both inputs.
One strategy for sampling a consistent s is as follows:

1. Using public randomness and no communication,
consider k2 strings s1, . . . ,sk2 drawn uniformly at
random from Σ2N ;

2. Let A be the subset (of approximately k) strings
consistent with Alice’s input, and let B be the sub-
set consistent with Bob’s input;

3. Alice and Bob communicate to determine whether
A∩B = /0, if not, they output the first element of
A∩B; otherwise they repeat the entire process.

It is clear that the first string in the intersection be-
tween A and B is distributed according to the correct dis-
tribution of s, and therefore π1 is correct. We need only
to consider its expected communication cost. The prob-
ability that A∩B 6= /0 is approximately 1−1/e, and the
process will terminate after an expected constant num-
ber of iterations. The communication cost, therefore, is
proportional to the cost of finding the intersection of A
and B. The naı̈ve solution to this problem (Alice sends
Bob A, Bob returns A∩ B) thakes O(k logk) commu-
nication. With some work, and allowing for a small er-
ror, one can bring the communication cost down to O(k)
[HW07, BGPW13]. The communication complexity of
this method, cannot, however, be reduced below O(k),
since deciding whether two sets of size ∼ k are disjoint
(and finding a point of intersection) is known to require
Ω(k) communication [KS92, Raz92].

The second protocol, π2, attempts to exploit the
structure of the distribution of s. Note that if Alice and
Bob knew whether a≤ b or a > b, and moreover, were
given a number c that separates them (i.e. such that
a ≤ c ≤ b or a ≥ c ≥ b), then the communication com-
plexity of the problem would be only O(logk):

1. Given a c such that a ≤ c ≤ b or a ≥ c ≥ b, for
concreteness assume that a≤ c≤ b;

2. Using public randomness and no communication,
generate strings t1, t2, . . . ∈U Σ2c+1;

3. Alice sends Bob the index of the fist string s′ which
is consistent with FA (i.e. s′2a+1 = FA(s1..2a));

4. Using public randomness and no communication,
generate strings r1,r2, . . . ∈U Σ2N which extend s′

with uniformly random symbols;

5. Bob sends Alice the index of the fist string s which
is consistent with FB (i.e. s2b+2 = FB(s1..2b+1));

6. s is the output of the protocol.

It is again easy to see that this protocol outputs
strings with the correct distribution. The only steps that
use any communication are steps 3 and 5. Each of these
involves sending the index of the first acceptable string.
As discussed above, the probability of a string to be ac-
ceptable is 1/k, and therefore communicating the index
of the first acceptable string requires O(logk) bits.

Of course, the protocol described above requires
Alice and Bob to find a number c between a and b. If a
and b are n = logN bit numbers, finding such a c can be
done in O(logn) =O(log logN) communication using a
variant of Binary Search. Alice and Bob will exchange
hashes of prefixes of a and b to find the first location of
disagreement, and then use it to produce c. Notice that
producing c is at least as hard as deciding whether a> b.
Therefore, since our distribution of (a,b)’s is hard for
the GT (a,b) problem, protocol π2 will require at least
Ω(log logN) bits of communication. By our choice of
N = 22k

, we see that π2 is also a Θ(k)-communication
protocol.

Conclusion

The main outstanding open problem in this paper
is proving or disproving Conjecture 6. Assuming the
conjecture is true, it would give an example of a sam-
pling problem for which the information complexity
(and thus the amortized communication complexity) is
much lower than the one-shot communication complex-
ity.

It would be interesting to generalize our sampling
problem to a decision problem. Alternatively, if no such
decision problem exists, it would be interesting to un-
derstand what property makes protocols for decision
problems easier to compress. One possibility is that
in protocols for decision problems the answer is deter-
mined by messages sent by Alice and Bob. In contrast,
sampling problems often require the knowledge of pub-
lic randomness and/or one of the parties’ inputs to com-
pute the output.
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