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Abstract

We highlight some recent progress and challenges
in the area of interactive coding and information com-
plexity.

1. Introduction

The purpose of this brief note is to outline some
of the recent progress and open problems in the area of
coding for interactive computation. The majority of the
paper will focus on the two-terminal scenario, though
we will briefly mention extensions to k > 2 terminals.
The main difference between the interactive computa-
tion scenario and the standard transmission scenario, is
that in the interactive setting the parties wish to perform
(or compute) a general operation that depends on their
inner states before the operation, and that is not neces-
sarily a simple transmission task. For example, if be-
fore the interaction the state of the terminals if given by
a distribution (X ,Y )∼ µ , the terminals may be required
to compute a function F(X ,Y ) that depends on both X
and Y . In this language, the transmission problem from
the first terminal to the second one is equivalent to com-
puting the function F(X ,Y ) = X .

Studying the problem of interactive computing has
at least two benefits. Firstly, it gives us a better pic-
ture on the ability of parties to perform complex tasks
with given communication resources, and the ability of
channels to support such tasks. Secondly, it allows one
to extend the reach of information theory deeper into
the realm of communication complexity lower bounds,
and produce results in that area with the hope of obtain-
ing new computational complexity lower bounds that
would follow.

For the purpose of this presentation, we break the
interactive computing problem into three main direc-
tions: interactive compression and noiseless coding, in-
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teractive worst-case noisy coding, and interactive chan-
nel capacity. Our main focus will be on compression
problems and their connections to communication com-
plexity, but we will present problems in all three direc-
tions.

1.1. Basic setup: communication complexity

The basic setup is that of communication complex-
ity. There are two parties (terminals), Alice and Bob.
Prior to the communication, they are given a pair of in-
puts (X ,Y ): Alice is given X and Bob is given Y . De-
pending on the context, the input pair (X ,Y ) may be
drawn from a distribution µ . Alice and Bob need to
perform a computational task T (X ,Y ) on their inputs.
Unless otherwise stated, we assume that they employ a
noiseless binary channel. In communication complex-
ity, the objective of Alice and Bob is to perform T (X ,Y )
while sending as few bits as possible over the chan-
nel. Sometimes we are also interested in the number
of rounds (i.e. the number of alternations between Al-
ice and Bob speaking). A comprehensive introduction
to communication complexity, and to the state-of-the-
art as of 1997 can be found in [KN97].

Computation is performed by means of a protocol.
A protocol is a sequence of functions which specify the
next message to be sent (and the speaker). Thus a de-
terministic protocol (i.e. one that uses no randomness)
is just a sequence of functions that map the transcript so
far and the speaker’s input to the next message. In ran-
domized protocols the parties in addition are allowed
to use sources of randomness. In general, it is impor-
tant to distinguish between two types of randomness.
Public randomness refers to a random string R that is
shared by Alice and Bob. Private randomness refers
to random strings RA and RB such that only Alice has
access to RA and only Bob has access to RB. We as-
sume that access to the shared randomness does not add
to the communication cost. This is justified in the con-
text of communication complexity by a generic reduc-
tion from public to private randomness [New91]. In the



communication complexity context, the opposite reduc-
tion is trivial: parties with access to public randomness
can simulate private randomness. However, in some
settings, particularly in the setting of information com-
plexity, having access to private randomness may enable
parties to solve problems more efficiently – allowing
them to release their information in a more controlled
manner during an interaction.

The communication complexity of a task T is the
smallest number of bits that Alice and Bob need to ex-
change to perform T . The communication complexity
usually refers to the worst case number of bits, although
average case communication complexity is also some-
times considered.

Another useful way of looking at protocols is by
means of a protocol tree. A protocol tree is a binary
tree where to each node v one associates an owner
o(v) ∈ {A,B}, and a function that maps the owner’s in-
put to the next message. Thus if o(v) = A we will have
a function fv : X 7→ {0,1} in the deterministic setting,
and a function fv : (X ,R,RA) 7→ {0,1} in the random-
ized setting.

In the remainder of the paper, we outline some
progress, and some problems that are, to the best of
our knowledge, open, in three directions: (1) interac-
tive information complexity; (2) interactive coding for
adversarial noise; and (3) interactive coding for noisy
channels. The unifying theme of these three directions
is that we view the interactive task as one whole op-
eration, without breaking it down into a series of one-
way transmissions. While this complicates matters, it
also raises opportunities for more efficient protocols as
well as for a new lens through which the communica-
tion complexity of functions can be studied.

2. Interactive information complexity

We start with looking into the properties of in-
teractive information complexity. A more detailed re-
cent discussion on the topic can be found in [Bra12b],
though some of the open problems presented here are
new. While communication complexity is concerned
with the number of bits Alice and Bob need to exchange
to perform a task T , information complexity is con-
cerned with the amount of information they need to ex-
change irrespective of the actual number of bits trans-
mitted in the process. Informally speaking, the mini-
mum amount of information that needs to be exchanged
to perform T is the information complexity of T . We
will also be interested in minimizing the amount of in-
formation about the inputs (X ,Y ) that needs to be re-
vealed to an external observer in order to perform T .
This quantity is referred to as the external informa-

tion complexity of T . In addition to the connections
of these quantities to communication complexity, they
are also interesting in their own right in the context
of information-theoretic privacy [Kla04]: where not re-
vealing too much information is in fact the primary ob-
jective.

For the remainder of the section, unless otherwise
stated, we assume that Alice and Bob are given a pair
of inputs (X ,Y ) distributed according to a distribution
µ . The have access to public and private randomness.
Let π be any protocol. An execution of the protocol on
the pair of (random) inputs (X ,Y )∼ µ gives rise to the
transcript Π = Π(X ,Y ) of the protocol which is itself a
random variable. The information cost of a protocol Π

is the amount of information that the protocol reveals
to Alice and Bob about their input. For example, the
amount revealed to Alice – who knows X – about Y is
given by the conditional mutual information I(Y ;Π|X).
Thus the information cost of π is given by

ICµ(π) := I(Y ;Π|X)+ I(X ;Π|Y ). (1)

The task of finding the communication complexity of a
task T can be reformulated as the task of finding a low-
communication protocol for computing T . In the same
vein, we can use (1) to define the task of finding the
information complexity of T as the task of minimizing
the information complexity of the protocol for T :

ICµ(T ) := inf
π protocol performing T

ICµ(π). (2)

Note that we must take an inf and not a min in (2), be-
cause the protocol π can be arbitrarily long (as long as
it doesn’t reveal too much information to the parties).
Thus ICµ(T ) may not be achievable by any individual
protocol, but only as a limit of a sequence of protocols
π1,π2, . . . which increase in their length and decrease in
their information cost. In fact, this is exactly the case
even for such a simple task T as computing the AND of
two bits T (X ,Y ) = X ∧Y [BGPW12a].

What gives ICµ(T ) operational meaning is the fact
that it is equal to the scaling limit of communication
complexity:

Theorem 1 ([BR11b]1, somewhat loosely re-stated.)
Let T n be the task of performing n independent copies
of the task T . Suppose that T allows for some non-zero
error ε > 0. Then we have:

ICµ(T ) = lim
n→∞

CCµn(T n)/n. (3)

1The ‘≥’ direction of Theorem 1 was independently proved by Ma
and Ishwar [MI11, MIG12] using repeated application of the Wyner-
Ziv compression scheme.



In particular, Theorem 1 applies when T is the task
of computing a function F(x,y) with success probabil-
ity 1−ε , where ε > 0. Moreover, the information com-
plexity of tasks is additive over independent tasks, and
subadditive over dependent ones [Bra12b]. We have

ICµ1×µ2((T1,T2)) = ICµ1(T1)+ ICµ2(T2), (4)

and

ICµ((T1,T2))≤ ICµ|(X1 ,Y1)
(T1)+ ICµ|(X2 ,Y2)

(T2). (5)

Thus the properties of ICµ(T ) make it a well-behaved
complexity measure. Its properties and the connection
to communication complexity make the study of in-
formation complexity worthwhile. While information
complexity applies to general tasks, to keep the discus-
sion simple we will focus on tasks of evaluating (0/1)-
valued functions from now on. Thus F : (X ,Y )→{0,1}
will be a function, which Alice and Bob would like to
evaluate correctly except with error ε ≥ 0. We denote
the information complexity of this task by ICµ(F,ε).

2.1. Computability of information complexity

The first problem that is (somewhat embarrass-
ingly) open, is computing the information complexity
from the truth table of F :

Problem 2 Given the truth table of a function F :
(X ,Y )→ {0,1}, and error parameter ε ≥ 0, and a dis-
tribution µ of (X ,Y ), can one give a general procedure
for computing the information complexity ICµ(F,ε)?

We believe the answer to Problem 2 to be affirma-
tive. As noted above, the problem is that there might
be a sequence of protocols whose information cost de-
creases as protocol size increases. The ≤ direction of
Theorem 1 gives one way to obtain a decreasing se-
quence that converges to ICµ(F,ε) by considering the
amortized cost of n copies of F as n→ ∞. Unfortu-
nately, for this procedure to compute ICµ(F,ε), we need
to have an effective bound on the sequence’s rate of con-
vergence down to ICµ(F,ε).

The work of Ma and Ishwar [MI11] gives a com-
putable characterization of ICµ(F,ε), but only when one
fixes the number of rounds of interaction (back-and-
forth messages) in advance. Once again, we do not
know an effective rate of convergence of the round-
restricted information complexity to the unrestricted
value.

2.2. Compressibility of interactive computation

The next set of questions, which is somewhat re-
lated to the computability question above has to do with

compressibility of interactive computation. If one were
to view ICµ(F,ε) as the interactive analogue of Shan-
non’s entropy, then Theorem 1 would be the analogue
of the noiseless source coding theorem. The other piece
of the puzzle, which is currently missing, is an analogue
of Huffman coding – an efficient one-shot encoding
scheme for low-information computations. We first for-
mulate this as a question about the relationship between
information and communication complexity. Note that
in the non-interactive case, Huffman coding implies that
the expected cost of sending one message X is bounded
by H(X)+1. In the interactive case we ask:

Problem 3 How close is the average case ε-error com-
munication complexity CCaverage

µ (F,ε) of F to its infor-
mation complexity ICµ(F,ε)? In particular, is it true
that

CCaverage
µ (F,ε) = O(ICµ(F,ε))? (6)

The only general result for a bound on the commu-
nication complexity C in terms of the information com-
plexity I that we currently have is of the form C < 2O(I)

[Bra12b]. This is a far cry from the linear relationship
we ask for in Problem 3. Our current understanding of
Problem 3 is limited. In particular, while it is possible
that the answer to the question is affirmative, it is also
possible that the exponential bound is tight – i.e. that
there are examples such that C = 2Ω(I).

There is another viewpoint onto Problem 3. By
Theorem 1, ICµ(F,ε) is equal to the amortized com-
munication complexity of F as long as ε > 0. Thus (6)
can be rephrased as

CCaverage
µ (F,ε) = O(CCµn(Fn,ε)/n)?

or, more familiarly, as

CCµn(Fn,ε) = Ω(n ·CCaverage
µ (F,ε))? (7)

This latter formulation is known as the direct sum prob-
lem for distributional communication complexity. In
general, the direct sum problem asks whether solving
n copies of a problem is n times as hard as solving one
copy. It is usually clear that it is at most as hard, but
could there be savings in solving n copies in parallel?

In some other contexts savings indeed are attain-
able. Consider a fixed matrix A ∈ Rn×n and the task
of computing the product Av for vectors v ∈ Rn. A sim-
ple counting argument shows that for most matrices this
task requires a boolean circuit of size Θ̃(n2). At the
same time, the task of computing Av1, . . . ,Avn in par-
allel can be accomplished by a circuit of size Õ(nω),
where ω < 3 is the matrix multiplication constant.

In the context of randomized communication com-
plexity, the problem remains open, with the best cur-
rently known result [BBCR10] giving (for any constant



ε > 0)

CCµn(Fn,ε) = Ω̃(
√

n ·CCaverage
µ (F,ε)). (8)

In the special case of µ being a product distribution µ =
µX ×µY the statement (8) can be strengthened to

CCµn(Fn,ε) = Ω̃(n ·CCaverage
µ (F,ε)), (9)

which is tight up to polylogarithmic factors.
As mentioned above, yet another closely related

way of rephrasing Problem 3 is in terms of protocol
compression.

Problem 4 Given a protocol π that has information
cost I = ICµ(π) can π be simulated by another protocol
π ′ whose communication complexity CCµ(π

′)≈ I?

It is not hard to see that such a compression scheme
would imply an affirmative answer to Problem 3: we
can just take a low-information complexity protocol for
F and compress it into a low communication proto-
col. A converse statement is also somewhat true if we
broaden Problem 3 to tasks, then we can define T as
the task of simulating the protocol π . Completing T in
low communication cost is equivalent to compressing
π . A naı̈ve attempt at performing such a compression
would be to try and compress the protocol round-by-
round. This doesn’t work due to the 1-bit per round
overhead that it introduces. This overhead turns out to
be critical when π is highly interactive.

A slightly less ambitious goal is to compress in-
teractive protocols when the compression is allowed to
have a (weak) dependence on the communication com-
plexity of the original protocol, in addition to the de-
pendence on its information complexity. Let π be a
protocol whose information cost is still I = ICµ(π),
and whose (worst-case) communication cost is C =
CCµ(π

′) ≥ I. For what functions B(I,C) can we sim-
ulate π using a protocol π ′ whose communication cost
is CCµ(π

′) = B(I,C)? An ideal scenario would be
B(I,C) = O(I). Trivially, one has B(I,C) ≤ C (corre-
sponding to π ′ = π). Different functions B(I,C) corre-
spond to different statements of the direct sum theorem.
For example, the statement (8) follows from a compres-
sion scheme of the form

B(I,C) = O
(√

I ·C (logC)O(1)
)
.

A stronger compression bound, e.g. one of the
form B(I,C) = Õ

(
Iq ·C1−q

)
for q > 1/2 would

imply stronger direct sum theorems than currently
known. For µ’s that are product distributions, we
have a stronger bound of B(I,C) = O

(
I · (logC)O(1)

)
[BBCR10], which implies the near-optimal direct sum
theorem (9).

2.3. External information complexity

So far, we have focused on the information com-
plexity of functions and tasks, which is the amount of
information the parties need to exchange to perform the
task. Another quantity of interest is the external in-
formation complexity of functions. External informa-
tion complexity is arguably as natural a notion as in-
formation complexity, and it measures the amount of
information the parties need to reveal to an external ob-
server while performing the task. In fact, within the
context of theoretical computer science it was histori-
cally considered before (internal) information complex-
ity [CSWY01, BYJKS04]. Formally, the external in-
formation cost of a protocol π with inputs over a prior
distribution µ is given by

ICext
µ (π) := I(XY ;Π). (10)

It is not hard to see that the external information cost is
always at least as high as the information cost of π:

ICµ(π)≤ ICext
µ (π)≤ CCµ(π). (11)

The notion of ICext
µ (π) immediately gives rise to the no-

tion of the external information complexity of tasks:

ICext
µ (T ) := inf

π protocol performing T
ICext

µ (π). (12)

We will focus of the task of computing a function F
with error ε ≥ 0, whose external information complex-
ity is denoted by ICext

µ (F,ε). We will be particularly
interested in the scenario where ε = 0.

All the compression questions from the previous
section can be restated for external information com-
plexity. In light of (11) the following question is strictly
easier than Problem 4:

Problem 5 Given a protocol π that has information
cost Iext = ICext

µ (π) can π be simulated by another pro-
tocol π ′ whose communication complexity CCµ(π

′) ≈
Iext?

We do not know the answer to Problem 5, although it
may well be negative. However the gap is narrower
than in the information complexity case (Problem 4).
In particular, we know that a protocol with external in-
formation cost Iext and communication cost C can be
simulated using communication O

(
Iext · (logC)O(1)

)
[BBCR10]2.

2For product distributions µ = µX ×µY the notions of information
cost and external information cost coincide. Thus results about exter-
nal information cost translate into results about information cost for
product distributions.



In addition to the compression questions, another
set of unanswered questions stems from trying to asso-
ciate an operational meaning to ICext

µ (F,ε). We do not
have a general characterization similar to Theorem 1,
and it is not clear that one exists. However, we can of-
fer the following tantalizing conjecture. Recall that the
characterization of information complexity as the amor-
tized communication complexity of F only worked for
non-zero error ε > 0. We conjecture that external in-
formation complexity gives amortized communication
complexity in the zero-error regime:

Problem 6 Is the following conjecture true:

lim
n→∞

CCµn(Fn,0)/n = ICext
µ (F,0)? (13)

We can prove the ‘≤’ direction of the conjecture
[BGPW12b] using a combination of techniques from
[BR11b] and from [HJMR07]. However, we currently
do not have a proof for the converse direction, and can-
not be sure that it is in fact true. The evidence for it is
mostly numerical in the form of “coincidences”. We list
some of these below.

The message transmission case. In the more fa-
miliar setting where Alice wants to transmit a message
to Bob, i.e. when F(X ,Y ) = X , the amortized cost
of transmission with negligible but non-zero error is
H(X |Y ) by the Slepian-Wolf theorem [SW73]. It is not
hard to see that

lim
ε→0

ICµ(F,ε) = H(X |Y ),

which is consistent with Theorem 1. On the other hand,
zero-error transmission requires H(X) communication
[Orl90, Orl91] – which is the external information com-
plexity of the transmission problem.

The equality function. Suppose the two parties are
given two binary strings of length n and want to de-
termine whether they are equal or not. It turns out
that one can view this question as n copies of the bit
equality EQ : {0,1}× {0,1} → {0,1} function where
the prior µ is very skewed towards the bits being equal
(i.e. µ places almost all of its weight on the (0,0) and
(1,1) entries). For full reasoning on this connection see
[BGPW12a]. It can be shown that the internal zero-
error information complexity of EQ with respect to such
distribution is vanishing, since even if the parties just
send each other their inputs, the amount of information
learned will be negligible, as the parties already know
each other’s inputs with high degree of confidence. At
the same time, the external information complexity of
such equality is close to 1 bit in the worst case. This
distinction corresponds to the fact that the number of
bits two parties need to exchange to determine whether

their n-bit strings are equal except with tiny error is o(n)
(through hashing), while the number of bits that need to
be exchanged to determine equality with zero error is
≥ n+1 = 1 ·n+o(n) [KN97].

The set intersection problem. The third exam-
ple to consider is that of computing the intersection
of two subsets X ,Y ⊂ {1,2, . . . ,n}. This problem can
be thought of as computing n two-bit AND functions
in parallel. The information complexity of AND is
≈ 1.4922 bits [BGPW12a]3. Thus the communication
complexity of set intersection with small but non-zero
error is ≈ 1.4922n + o(n). The external information
complexity of the two-bit AND function is log2 3 ≈
1.5850. This is consistent with the communication
complexity of set intersection with zero error being
(log2 3)n [AC94] – providing further evidence for con-
jecture (13).

2.4. Beyond two terminals

It is a natural and very interesting goal to gener-
alize the discussion above to more than two terminals.
There are various models for multi-terminal interactive
computation. The main complication comes from the
fact that the prior distributions may be rather sophisti-
cated. One popular model of multi-party computation is
that of number-on-forehead (NOF). In the NOF model
each party gets to see all inputs but its own and the
goal is to compute a function F(X1, . . . ,Xk) of the inputs
[KN97, CP10]. Lower bounds in this model would have
profound implications in complexity theory [BT91].

There are numerous complications in extending no-
tions of information complexity to multi-terminal set-
tings. Apart from sheer technical difficulties, a major
obstacle is finding the “right” analogue of public and
private randomness. Note that even with three parties
we have seven different types of randomness (one “pri-
vate” for each party, one “public”, and three shared be-
tween two of the three parties but not the third). Allow-
ing all the different types of randomness leads to an-
other impasse, as in this regime there are information-
theoretically secure protocols for multi-party compu-
tation [BGKW88] which would bring the information
complexity of all problems close to 0.

It is possible that answering Problem 6 would be a
useful first step toward the multi-terminal case.

3The AND function, analyzed in [BGPW12a] is, to the best of our
knowledge, the first example where it can be shown that information
complexity is an infimum over an infinite sequence of protocols: no
finite round protocol quite achieves ICµ (AND,0) for almost all µ .



3. Interactive error correction

The discussion so far focused on coding for interac-
tive computing in a noiseless binary channel. In the next
two sections we will focus on error-correction problems
when the channel contains random or adversarial noise.
The first regime we would like to consider is that of ad-
versarial noise. In this regime Alice and Bob are trying
to perform a task T over a channel in which an adver-
sary is allowed to corrupt a constant fraction of the mes-
sages. Both the regime of a binary channel and that of
a channel with constant-size alphabet Σ are interesting.

If the task T is just a simple transmission task,
then the theory of (worst-case) error-correcting codes
[MS77, Sud01] applies. While there are many open
problems in coding theory, the overall picture is fairly
well understood. In particular constructions of “good”
(i.e. positive-rate, constant-distance) codes exist, and
there are efficient encoding and decoding constructions.
In the interactive case, the task may include many back-
and-forth messages. As a generic task, it is conve-
nient to think about alternating binary pointer jumping
(BPJd). In this problem the parties are looking at a
depth-d binary tree. Alice is given a subset TA of edges
on the odd layers of the tree, such that exactly one edge
coming out of each vertex on odd layers. Similarly, Bob
is given a subset TB of edges on the even layers of the
tree. Their goal is to find the unique leaf that is con-
nected to the root by edges from TA ∪ TB. There is an
obvious d-bit protocol for finding the leaf, where Alice
and Bob alternate. In a sense BPJd is the generic inter-
active task, as any interactive protocol can be recast as
an instance of BPJd .

Now suppose an adversary is allowed to corrupt a
δ -fraction of the symbols exchanged by Alice and Bob,
for some δ > 0. Can they still compute BPJd? One ob-
vious solution is to use ordinary error-correcting codes,
using which Alice can send her input TA to Bob, who
can then compute the leaf. This solution would work,
but would cause an exponential blow-up in communica-
tion, since TA takes ∼ 2d bits to describe. It is not at all
clear that a constant-rate error correcting code is possi-
ble. Note that no round-by-round solution could possi-
bly succeed since the adversary is free to use her budget
to corrupt some of the early rounds and thus to com-
pletely derail the computation. Surprisingly, constant-
rate error-correcting codes for interactive computing do
exist. The first such code was demonstrated in a break-
through work by Schulman [Sch96], who showed a
constant-rate code against an adversary who is allowed
to corrupt a constant δ -fraction of the symbols on the
channel. Schuman introduced a concept of a tree code
that has been used in all constructions since. Schul-

man’s parameters are far from optimal. In particular δ

is limited to be below 1/240. In addition, the construc-
tion is not efficient in that it requires time exponential
in d to compute the encoding/decoding (even though the
communication itself is O(d) symbols).

A recent line of work on interactive error-
correction [BR11a, GMS11, Bra12a, BK12] improves
on Schulman’s original work in several directions.
[BR11a] improves error tolerance to any δ < 1/4 for
constant symbol space size |Σ|, and δ < 1/8 for binary
channels Σ = {0,1}. This error-tolerance is arguably
optimal, at least for a large class of protocols. Note that
an error rate of δ = 1/4 means that the adversary may
corrupt 1/2 or Alice’s messages – as long as she speaks
at most half of the time. Thus unique decoding is not
possible for protocols where the order of messages is
fixed in advance, or more generally for encoded pro-
tocols where both parties speak equally often. There
is still a theoretical possibility that the 1/4 barrier can
be broken if the parties can adaptively allocate the turn
to the party whose messages are being corrupted more
often. Other works aim at making the constructions
more computationally efficient. In particular, [BK12]
succeeds at making the construction poly-time efficient,
while tolerating error rates of up to δ < 1/16 (δ < 1/32
over the binary alphabet). Finding an efficient construc-
tion with the best error rate remains open:

Problem 7 Give an polynomial-time efficient error-
correcting scheme for interactive error correction with
error rate of up to δ < 1/4 (δ < 1/8 over a binary chan-
nel).

None of the works so far have considered the ques-
tion of rate seriously – beyond ensuring that it is non-
zero. This is mainly due to insufficient tools to tackle
this question. Hence the question of rate remains wide
open:

Problem 8 Given an error rate δ > 0 what is the best
rate ρ(δ ) which we can achieve while protecting inter-
active communication against a δ -fraction of adversar-
ial errors?

Obvious upper bounds are the corresponding val-
ues for the non-interactive case, but understanding the
additional “interactivity penalty” one incurs while try-
ing to protect interactive computation may require the
development of new tools.

Finally, we turn our attention to list-decodable
codes [Sud00]. It is not immediately clear how to ex-
tend interactive error correction to the list-decodable
scenario. In the context of the BPJd problem, by the
end of the computation, the parties should have a small



(constant) number of leaves which are consistent with
the messages received by the parties. There are many
questions one can ask about list-decodable interactive
coding. In particular, we conclude with the following
problem:

Problem 9 Is there a list-decodable encoding for the
BPJd problem that for all δ < 1/2, assuming the adver-
sary corrupts at most a δ -fraction of the symbols in the
transmissions, outputs a constant number of leaves one
of which is the correct leaf? If the answer is ‘no’, is
such list decoding possible for any value δ ≥ 1/4?

4. Interactive channel capacity

Finally, we turn our attention to questions of in-
teractive channel capacity. This can be viewed as the
random (rather than adversarial) analogue of the coding
problems discussed in previous section. To the best of
our knowledge, not much is known in this regime.

A natural definition of interactive channel capac-
ity is in terms of the ability of the channel to sustain
interactive communication, and the rate at which this
communication can be sustained. For simplicity, let us
focus on a binary channel. The ability to sustain interac-
tive computation can be measured in terms of the abil-
ity to solve the binary pointer jumping (BPJ) problem
that has been discussed above. Thus the capacity of the
channel is c if it takes d/c one-bit messages over the
channel to solve the depth-d BPJd problem with high
probability.

Definition 10 The interactive channel capacity c of a
channel C is the smallest ratio such that for all c′ < c
and for all d large enough, BPJd can be solved using
d/c′ transmissions over the channel, with a vanishing
error probability.

Definition 10 gives rise to a large number of
questions about the capacities of individual channels.
Clearly that standard Shannon’s channel capacity is an
upper bound on the interactive channel capacity. On the
other hand, results about interactive error correction that
were discussed in the previous section imply that chan-
nels that have non-zero capacity will also have non-zero
interactive capacity.

Among the possible channels, we highlight two in-
teresting special cases. The first one is that of binary
erasure channels.

Problem 11 What is the interactive capacity cpe of a
binary erasure channel with erasure probability pe?

The second one is for a binary symmetric channel:

Problem 12 What is the interactive capacity cps of a
binary symmetric channel with crossover probability
ps?

In particular, understanding how cpe and cps behave
as pe→ 0 and ps→ 0 are interesting questions.

5. Conclusion

In this note we have discussed some basic notions,
recent progress, and open problems surrounding inter-
active coding theory. Far from being a broad historical
or bibliographic survey, the brief note focuses on recent
developments and directions with the hope of further
engaging the information theory community in interac-
tive information theory.
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