
Constructing Non-Computable Julia Sets

Mark Braverman∗

Department of Computer Science
University of Toronto

mbraverm@cs.toronto.edu

Michael Yampolsky†

Department of Mathematics
University of Toronto

yampol@math.toronto.edu

ABSTRACT
While most polynomial Julia sets are computable, it has
been recently shown [12] that there exist non-computable
Julia sets. The proof was non-constructive, and indeed there
were doubts as to whether specific examples of parameters
with non-computable Julia sets could be constructed. It was
also unknown whether the non-computability proof can be
extended to the filled Julia sets. In this paper we give an
answer to both of these questions, which were the main open
problems concerning the computability of polynomial Julia
sets.

We show how to construct a specific polynomial with a
non-computable Julia set. In fact, in the case of Julia sets of
quadratic polynomials we give a precise characterization of
Julia sets with computable parameters. Moreover, assuming
a widely believed conjecture in Complex Dynamics, we give
a poly-time algorithm for computing a number c such that
the Julia set Jz2+cz is non-computable.

In contrast with these results, we show that the filled Julia
set of a polynomial is always computable.

Categories and Subject Descriptors
F.2.1 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Numerical Algorithms and Prob-
lems; G.1.m [Mathematics of Computing]: Numerical
Analysis—Miscellaneous

General Terms
Theory, Algorithms

Keywords
Julia sets, computability, dynamical systems, real computa-
tion

∗Partially supported by an NSERC postgraduate scholar-
ship
†Partially supported by an NSERC Discovery Grant

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’07, June 11–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-631-8/07/0006 ...$5.00.

1. INTRODUCTION
Studying dynamical systems is key to understanding a

wide range of phenomena ranging from planets’ movement,
to climate patterns to market dynamics. Various numerical
tools have been developed to answer questions about spe-
cific dynamical systems, such as predicting the weather or
planning the trajectory of a satellite. However, the theory of
computation behind these problems is generally not devel-
oped. While we have vast knowledge about the computabil-
ity and complexity of discrete problems, there is little known
about the computability of even the most natural problems
arising from dynamical systems. In the present paper we
study the computability of Julia sets, which derive from it-
eration of polynomial mappings of C.

Despite being the simplest non-linear examples of complex-
analytic dynamical systems, quadratic polynomials p(z) =
z2 + αz have emerged as one of the central subjects in the
theory of low-dimensional dynamical systems [17]. Their
properties are in many ways archetypical, and the decep-
tively simple looking formula hides an enormous complexity
of behavior. This complexity is found in a subset of the
plane, called the Julia set of a polynomial. It manifests it-
self in the beautiful computer-generated images of such sets,
and indeed, numerical experiments have been central to the
development of the field [15, 24]. Julia sets are among the
most drawn mathematical objects, as a brief Web search
readily attests.

Prior to our work, the distinction between computation-
ally “easy” and “hard” examples of Julia sets was made
empirically, based on the community’s ability to produce al-
gorithms for different classes of such sets. This classification
was not always correct. We were able to apply Theoretical
Computer Science to give an answer to most of the prob-
lems surrounding the computability of Julia sets, and some
of the questions about their computational complexity. The
answers we have obtained are quite unexpected, and have
revealed a deep connection between the computational hard-
ness and the analytic properties of the dynamics.

A Turing Machine has a dynamical definition, and can
even be embedded into a rather simple low-dimensional dy-
namics [1, 19, 20, 25]. In such examples, the unsolvability
of the Halting problem results in the impossibility of certain
predictions about the behavior of individual infinite trajec-
tories. This is, however, a somewhat artificial difficulty: in
practice it is often impossible to compute an infinite tra-
jectory not because of some deep theoretical reasons, but
simply due to the finite precision of computations. On the
other hand, the structural properties of all trajectories, such

as the shape of the attractors or repellers (and Julia sets are
examples of the latter) is frequently sufficiently robust to
allow numerical study. In particular, when the coefficients
of the dynamical system can be generated algorithmically,
one expects to be able to study its structure experimentally.
As we will see, even in the case of quadratic polynomials,
this need not be the case.

For a polynomial mapping p : C → C a trajectory or an
orbit of a point z ∈ C is the infinite sequence of iterates
z0 = z, z1 = p(z), z2 = p(z1) = p(p(z)), . . . To define the
Julia set Jp, note first that once the absolute value |z| is
very big, the absolute value |p(z)| will be even bigger, and
the orbit will escape to ∞. The set of points whose orbits
do not escape to infinity is thus a planar compact, which is
called the filled Julia set Kp. The Julia set is its boundary:
Jp = ∂Kp. It can be shown to consist of all points z in
C for which the behavior of the orbit is unstable: a small
perturbation in z can lead to a significant change in the
orbit. In Fig. 1 we see some examples of Julia sets and
filled Julia sets for maps of the form p(z) = z2 + αz. The
self-similarities which give each of the pictures its fractal
shape are due to the invariance p−1(Jp) = Jp.

A set S in C is said to be computable if one can draw it on
a computer screen. The basic decision procedure involved
is deciding whether to put a “pixel” on the screen or not.
A pixel P = B(c, r) is a ball with a rational center c =
q1 + q2i ∈ C and a rational radius r. The computation must
output 1 if B(c, r) intersects S. In this case the pixel is
colored black. The computation must output 0 if the pixel
is at least r-far from S, that is B(c, 2 · r) ∩ S = ∅, in which
case the pixel is colored white. If none of these possibilities
holds, either answer is acceptable.

The definition above is a standard definition for set com-
putability, and turns out to be quite robust. It was first
introduced in [21]. It is strongly related to other objects
in Computable Analysis – an area that was originated by
Banach and Mazur [2]. For example, under very broad con-
ditions a continuous real function is computable if and only
if its graph is computable (as a set) [6]. More on com-
putability of Euclidean sets can be found in [7, 9, 29]. Set
computability is discussed in greater detail in Section 2.

We remark that Julia sets have appeared in a context
somewhat similar to ours in the book [5] where the authors
studied their decidability in the Blum-Shub-Smale (BSS)
model of real computation. However, due to the algebraic
nature of the BSS model, not only all non-trivial Julia sets,
but even the simplest sets with fractal structure (such as the
middle-thirds Cantor set) are BSS-undecidable. As we will
see, the Computable Analysis approach leads to a meaning-
ful classification of Julia sets based on computability, which
also carries a very concrete practical meaning.

From now on, we shall focus our attention on the one-
complex-parameter family of polynomials of the form p(z) =
z2 + αz. To simplify notation, we will write Jα and Kα for
the corresponding Julia sets and filled Julia sets. In this
context, computing Jα by a machine M means generating
pictures of Jα with an arbitrarily high resolution given an
access to arbitrary precision approximations of the parame-
ter α. In other words, M = Mφ deciding whether to color
a pixel, has an access to an oracle φ such that for any m,
φ(m) is a rational point in C with |φ(m) − α| < 2−m.

We are mostly concerned with negative results in this pa-
per, and hence allow the machine Mφ to be non-uniform.

The machine may be designed with the specific parameter
α in mind. This definition makes the negative results the
strongest possible in this context: even with α in mind, one
cannot design a program that draws Jα. For positive re-
sults, non-uniform information is sometimes necessary. The
non-uniform information is generally a finite amount of in-
formation that cannot be constructively extracted from the
parameter α. We will see that in many cases no non-uniform
information is needed at all.

The simplest class of Julia sets, both dynamically and
computationally, is the class of hyperbolic Julia sets. These
sets have been shown to be computable in [31]. A poly-
time algorithm for computing some hyperbolic Julia sets
was given in [27]. It has been later generalized in [8, 26] to
all hyperbolic Julia sets. A related class are the parabolic
Julia sets, which are also poly-time computable [10].

Another class of computable Julia sets are the filled Julia
sets with empty interior, that is, the case when Jα = Kα

[3]. This is consistent with a more general fact we will prove
in this paper that the filled Julia set Kα is always com-
putable. Unlike the hyperbolic case, here little is known
about whether the algorithms can be made efficient. In fact,
there is an entire subfamily of these sets – called the Cre-
mer Julia sets – for which no informative pictures have been
produced to date.

The above list covers all cases but one – the most inter-
esting from the computational point of view – the instance
when Jα has a Siegel disc. The simplest case when it may
occur is if α = e2πiθ with an irrational θ. Locally, near 0,
the map pα : z 7→ z2 + αz behaves like a multiplication by
α, which corresponds to a rotation by the angle θ. If there
is an open region S ⊂ Kα around 0, then S is called a Siegel
disc. In this case, the map pα on S becomes a true rotation
by θ after an analytic change of coordinates. An example
of a computable Julia set with a Siegel disc can be seen in
Fig. 1(b), which corresponds to θ = (

√
5+1)/2 – the golden

ratio.

Negative results
The case when Jα has a Siegel disc is the only case when
it may not be computable. In [12] we have demonstrated
that there are non-computable Julia sets with a Siegel disc.
The proof used a diagonalization argument by constructing
a parameter α that “fools” the countable set of machines
Mφ

1 , Mφ
2 , . . . that may potentially compute Jα. In the proof

a sequence α1, α2, . . . was constructed so that αn → α and
so that for each n, and for each m ≥ n, αm “fools” Mn.
We were then able to deduce that Jα is uncomputable, by a
suitable limiting argument.

The proof was non-constructive, as it used queries to the
Halting Problem to obtain αn from αn−1 while making sure
that αn (and all the following α’s) “fools” Mn. Thus, while
it has shown that it is not always possible to compute Jα

given α, it left the possibility open that no such α is com-
putable. This would mean that there is no “real” possibil-
ity of running into or producing an α for which Jα cannot
be computed. In the present work we construct such an α.
Moreover, we show how to construct an α such that comput-
ing Jα is computationally equivalent to solving the Halting
Problem. Recall that a real number α is computable if there
is a TM M(n), which on an input n outputs a rational qn

with |α − qn| < 2−n [28]. We prove the following:

Figure 1: Examples of quadratic Julia sets Jp (black), and filled Julia sets Kp (gray); orbits that originate at
white points escape to ∞; note that on picture (c) Kp = Jp, since Kp has empty interior

Theorem 1. There exists a computable α such that given
an oracle for Jα it is possible to solve the Halting Problem.
In particular, Jα is non-computable.

The simplest case when a Siegel disc occurs is when |α| =
1, i.e. α has the form α = e2πiθ. In this case we are actually
able to characterize the non-computability of the possible
Julia sets Jα for computable α’s.

Theorem 2. (1) Let R(x, y) be any computable pred-
icate on N2, and let P (x) ≡ ∃yR(x, y). Then there is a
computable α = e2πiθ such that Jα is computable relative to
P (x) and P (x) is computable relative to Jα.
(2) Let α = e2πiθ be computable. Then there is a computable
predicate Rα(x, y) on N2 such that the predicate Pα(x) ≡
∃yRα(x, y) is computable relative to Jα and vice versa: Jα

is computable relative to Pα(x).

Here by “Jα is computable relative to P (x)” we mean that
there is a TM which given an oracle access to the predicate
P (x) computes the Julia set Jα with any prescribed preci-
sion. The statement “P (x) is computable relative to Jα” is
interpreted in a similar fashion. Note that Theorem 1 is a
special case of Theorem 2. It follows from part (1) of the the-
orem by taking P (x) to be the Halting Problem predicate.
Then there is a computable α such that P (x) is computable
relative to Jα, which means that given an oracle for Jα one
can compute P (x) and solve the Halting Problem.

The proof of Theorem 2 uses cutting-edge tools from Com-
plex Dynamics, in particular [13], and is somewhat technical.
In this presentation we isolate the underlying dynamics to
make the exposition accessible.

We can further strengthen Theorem 2 by assuming a widely
believed conjecture in Complex Dynamics, we call the com-
putability of υ conjecture. It is a constructive version of the
main result in [13]. It is significantly weaker than another
conjecture in Complex Dynamics called the Marmi-Moussa-
Yoccoz conjecture [22]. We prove:

Theorem 3. Assuming the computability of υ conjec-
ture, let R(x, y) be any computable predicate on N2, and
let P (x) ≡ ∃yR(x, y). Then there is a poly-time computable
α = e2πiθ such that Jα is computable relative to P (x) and
P (x) is computable relative to Jα.

This implies that there are poly-time computable α’s with
non-computable Julia sets. In other words, an n-bit ap-
proximation of α can be obtained in poly(n) time, but Jα is
non-computable.

Positive results
Our positive results deal with computability of filled Julia
sets Kα. It is natural to ask whether the same techniques
used to construct non-computable Julia sets can be used
to construct non-computable filled Julia sets. In fact, this
question was posed to us by John Milnor. Somewhat sur-
prisingly, the answer to this question is negative: all filled
Julia sets are computable.

Theorem 4. For any α, Kα is computable. Moreover, in
all non-parabolic cases, Kα can be computed by one of the
two machines: Mφ

c (when it is connected), or Mφ

d (when it
is disconnected).

The result actually extends beyond the quadratic case, to
all polynomial Julia sets. In the proof we give an algorithm
for computing Kα. The key new element here is that we are
able to deal with the case when Kα contains a Siegel disc –
and so Jα may be non-computable.

2. COMPUTABILITY OF REAL
FUNCTIONS AND SUBSETS OF R2

In this section we outline the basic definitions of com-
putability of real functions and subsets of R2. These defini-
tions are quite natural, and are standard within the context
of Computable Analysis. They go back to the work of Ba-
nach and Mazur [2, 23]. A more contemporary exposition
can be found in the books [18, 29]. The definitions we will
be using here are summarized in [9].

First, consider a function f : R → R. f is said to be
computable, if there is a TM M , that given an access to ar-
bitrarily good approximations of x can output an arbitrarily
good approximation of f(x). This is formalized using a no-
tion of an oracle. Denote by D = { m

2k : m ∈ Z, k ∈ N}
– the set of the dyadic numbers. A function φ : N → D

is said to be an oracle for a number x ∈ R if for every n,
|φ(n) − x| < 2−n. In other words, the oracle φ allows the
machine to query a the number x with any desired precision
2−n.

Definition 5. The function f : S → R is said to be
computable on the set S ⊂ R, if there is an oracle TM Mφ(n)
such that for any x ∈ S and for any oracle φx for x, Mφx(n)
outputs a dyadic d ∈ D with |f(x) − d| < 2−n.

In particular, all simple functions, such as the functions
available on a standard calculator, are computable. The

domain also plays an important role: a constant function
f(x) = a is computable on R if and only if a is a computable
number. On the other hand it is always computable on
the singleton set S = {a} – because it coincides with the
computable function f(x) = x on this set.

A set C in R2 is said to be computable if we can produce
arbitrarily good pictures of it. A picture consists of a union
of pixels – balls P = B(q, 2−n) with centers q ∈ D2 on a
suitable dyadic grid. For convenience, we assume here that
C is closed and bounded. A pixel P should be colored black
(included in the picture) if it intersects C. It should be
colored white (excluded from the picture) if it is “far” from
C. We say that it is “far” if it is at least one pixel radius
away from C. The pictures on Fig. 1 are pictures of the
corresponding Julia sets according to this definition. This
definition is quite robust, and is equivalent to other natural
definitions. More details may be found, for example, in [7].
Formally,

Definition 6. A compact set C ∈ R2 is said to be com-
putable, if there is a computable function ψ : D2×N → {0, 1}
(in the classical sense) satisfying

ψ(q, n) =







1 if B(q, 2−n) ∩ C 6= ∅
0 if B(q, 2 · 2−n) ∩ C = ∅
0 or 1 otherwise

We are interested in questions of computability of Julia
sets. The Julia set Jα depends on the parameter α ∈ C. As
there are uncountably many parameters and only countably
many machines, we will need an oracle for α as part of the
input to the machine. Thus we are essentially trying to
compute the set-valued function J that maps α to the set
Jα.

Definition 7. The function J is said to be computable
on a set S of parameters α if there is an oracle machine
Mφ1,φ2(q, n) such that if (φ1, φ2) are oracles for the real
and imaginary parts of α, then Mφ1,φ2(q, n) computes Jα

in the sense of Definition 6.

If J is computable on a set S of parameters α, we say
that the Julia set is uniformly computable on S. It can
be shown, for example, that J is not uniformly computable
on the entire complex plane C [12]. If J is computable on
a singleton S = {α}, we say that the Julia set Jα is non-
uniformly computable, or just computable. This is the setting
in which we prove our negative results: the machine for
computing Jα has an oracle access to the parameter α, and
is also specifically designed to work with this parameter –
we are still able to produce parameters α for which this is
impossible.

3. JULIA SETS AND SIEGEL DISCS
In this section we discuss the definitions as well as some

facts about Julia sets and Siegel discs. We will only cite facts
that are directly relevant to the proofs below. An excellent
general reference about the mathematics behind Julia sets
is [24]. For simplicity, we will only discuss Julia sets Jα of
quadratic polynomials of the form pα(z) = z2 +αz. Using a
linear change of coordinates any quadratic polynomial can
be brought into this form. As mentioned in the Introduction,

Definition 8. The filled Julia set Kα is the set of points
z such that the orbit z, pα(z), pα(pα(z)), . . . does not escape
to ∞. The Julia set Jα is the boundary of Kα: Jα = ∂Kα.

Periodic orbits play a crucial role in the theory of Julia
sets. Denote by pk

α = pα ◦ . . . ◦ pα the k-th iterate of pα. If
z = pk

α(z) for some k > 1, then z is said to be a periodic
point. The smallest such k is called the period of z, and
{z, pα(z), . . . , pk−1

α (z)} is called a periodic orbit of period
k. The function pk

α(z) is a polynomial of degree 2k. Hence
the equation pk

α(z) = z has a root for every k. It can be
shown that there are infinitely many periodic orbits of pα,
of arbitrarily high period k.

For a periodic orbit o = {z1, z2, . . . , zk} of period k, the
multiplier of o is the derivative of pk

α(z) at z1:

m(o) =
(

pk
α(z1)

)′

= (pα)′(z1) · (pα)′(z2) · . . . · (pα)′(zk).

Note that this value does not depend on the choice of the
point z1 on the orbit o.

The value of m(o) dictates the local behavior of iterations
of pα near the orbit o. If |m(o)| < 1, then if we start iterating
a point z near some zi ∈ o, then after k iterations pk

α(z) will
be even closer to zi – approximately |m(o)| times closer.
Thus the orbits of points very close to o are attracted to o,
and the orbit o is called attracting. Note that in particular,
orbits of points near o do not escape to ∞, hence o is in the
interior of Kα in this case.

If |m(o)| > 1, then the opposite happens, and the orbits
of points in a small neighborhood of o always escape that
neighborhood. In this case o is said to be repelling. The
most interesting case is when |m(o)| = 1. In this case o
is said to be neutral. We summarize some of the relevant
properties of Jα and the periodic orbits of pα in the following
theorem. Details and proofs may be found in [24].

Theorem 9. (1) There is at most one non-repelling pe-
riodic orbit;
(2) all repelling periodic orbits are in Jα;
(3) repelling periodic orbits are dense in Jα:

Jα = {o | o is repelling};
(4) if there is a non-repelling orbit, then Jα is connected.

Quadratic Julia sets Jα can be classified according to the
status of their only non-repelling orbit. In the case when
there is an attracting periodic orbit (Fig. 1(a)), or when
the Julia set is not connected (Fig. 1(c)) the Julia set is
said to be hyperbolic. Hyperbolic Julia sets are the easiest
to analyze and are all poly-time computable [8, 26]. If there
are no non-repelling orbits and Jα is not hyperbolic, then
Kα = Jα has empty interior. All Julia sets Jα such that
Kα = Jα has empty interior are computable [3], albeit with
no running time guarantees.

It remains to consider the cases when pα has a neutral
periodic orbit o with multiplier m(o) = e2πiθ. When θ is
rational, the Julia set is said to be parabolic. Parabolic Julia
sets are also poly-time computable [10]. In the case when
θ is irrational, two scenarios are possible, either there is an
open neighborhood ∆ of o in Kα, or there is not. If there
is, Jα is called a Siegel Julia set. If there is not, it is called
a Cremer Julia set. Cremer Julia sets have no interior, and
thus are computable. All existing algorithms, however, have
impractical running times for such parameters, and no useful
pictures of Cremer Julia sets have been produced to date.

While studying Siegel discs and their computability prop-
erties, we shall focus on the simplest case, where α = e2πiθ

for some θ ∈ R is on the unit circle. In this case pα(0) =
02 + α · 0 = 0, and |p′

α(0)| = |α| = 1. Hence {0} is the only

non-repelling orbit for pα, and its multiplier is α. In this
case the Siegel disc is a topological disc ∆θ around 0. The
Riemann Mapping Theorem states that there is a unique
analytic map φθ : D → ∆θ from the unit disc D to ∆θ such
that φ(0) = 0 and φ′(0) is real and positive.

The map φθ conjugates the action of pα to a simple ro-
tation rθ by an angle θ of the unit disc, rθ : z 7→ e2πiθ · z.
That is, the following diagram commutative:

D rθ−→ D
φθ ↓ ↓ φθ

∆θ
pα−→ ∆θ

The action of pα on ∆θ is just that of a distorted rotation.
By the uniqueness of the map φ, the value φ′(0) > 0 is also

unique and has a special meaning. It is called the conformal
radius r(θ) of ∆θ. Intuitively, it measures the size of ∆θ. In
particular, the radius of the largest circle around 0 inscribed
in ∆θ is a number between 1

4
r(θ) and r(θ).

The Riemann Mapping Theorem has a constructive proof
[4, 16], which means that if we are given a boundary of a
region ∆ with an arbitrarily high precision, we can compute
the Riemann Map φ : D → ∆, and in particular we can
compute its conformal radius r(∆) = φ′(0). It can be shown
that if we are given a precision ε picture of the Siegel Julia
set Jα, we can compute r(θ) within an error of O(

√
ε). Thus,

if one can produce images of Jα of arbitrarily high precision,
then one can compute r(θ). In fact, it can be shown that
the converse statement also holds. Proofs of both directions
can be found in [3].

Lemma 10. For α = e2πiθ, the Julia set Jα and the con-
formal radius r(θ) of the Siegel disc are computable relative
to each other. That is, given access to α and r(θ) with an
arbitrarily high precision one can compute Jα, while given
access to Jα with an arbitrarily high precision one can com-
pute r(θ).

This reduces the need to work with the computability of a
set to working on the computability of a single number. The
function r(θ) has been studied extensively in Complex Dy-
namics. In particular, it turns out that it is strongly related
to the continued fraction expansion of θ. Recall that the
continued fraction expansion of θ ∈ (0, 1) is an expression

of the form θ =
1

a1 + 1

a2+ 1

. . .

, where a1, a2, . . . are positive

integers. We abbreviate θ = [a1, a2, . . .] to save space. The
continued fraction expansion is unique and infinite when θ is
irrational. It is finite when θ ∈ Q (cf. [29], Example 4.1.14.3
for some computational properties of the continued fraction
representation). We will also write θn = [an, an+1, . . .], so
that θn = 1/{θn−1}, where {•} is the fractional part func-
tion.

For an irrational θ ∈ [0, 1) − Q, the Yoccoz’ Brjuno func-
tion Φ(θ) is defined by

Φ(θ) =
∞

∑

n=1

θ1θ2 . . . θn−1 log
1

θn

.

Note that it is possible to make θn arbitrarily small by mak-
ing an very big. In particular, for any rational q, Φ(θ) → ∞
whenever θ → q. Moreover, it is not hard to see that there
are irrational values of θ for which the sum above diverges,

in which case we say that Φ(θ) = ∞. It was proved by
Brjuno and Yoccoz that Jα has a Siegel disc if and only if
Φ(θ) < ∞. If Φ(θ) = ∞ and θ is irrational, Jα has a Cremer
point. This gives a sharp combinatorial criterion for testing
whether there is a Siegel disc or a Cremer point. Much
more recently, Buff and Cheritat [13] have shown a very
sharp quantitative relation between the conformal radius of
the Siegel disc r(θ) and Φ(θ).

Theorem 11. [13] The function υ(θ) ≡ Φ(θ) + log r(θ)
extends from its domain of definition (where Φ(θ) < ∞ and
r(θ) 6= 0) to a continuous function on [0, 1]. Moreover, there
is an explicit algorithm for computing the values of υ(m/n)
for a rational m/n ∈ [0, 1].

Note that the theorem falls short of guaranteeing that
the function υ is computable, since we do not know any
effective bounds on its modulus of continuity. It is generally
conjectured that υ is computable:

Conjecture 12. The function υ(θ) is computable of the
[0, 1] interval.

In fact, there is a stronger conjecture, called the Marmi-
Moussa-Yoccoz Conjecture [22], that gives an explicit bound
on the modulus of continuity of υ: whenever |x−y| < f(ε) =
ε2, |υ(x) − υ(y)| < ε.

Assuming computability of υ, Theorem 11 and Lemma
10 reduce the computational analysis of Jα to that of Φ(α).
Surprisingly, however, despite its simple analytic form, Φ(θ)
is not always computable. In fact, all the negative state-
ments about computability of Julia sets in Theorems 1, 2
and 3 can also be shown to be true for the function Φ by
similar arguments.

4. CHARACTERIZING SIEGEL DISCS
WITH COMPUTABLE PARAMETERS

In this section we outline the proof of Theorem 2. The full
details of the proof may be found in [11]. The proof is done
by giving a precise characterization of the possible values of
r(θ) for computable θ’s. First, we need the notion of a right
computable number.

Definition 13. A real number β is right-computable if
there is a TM computing a non-increasing dyadic sequence
bn ∈ D such that bn ց β.

A right-computable number does not have to be com-
putable, as there may be no recursive estimate on the rate of
convergence of bn to β. It is not hard to see that computing
right-computable numbers is equivalent to evaluating predi-
cates of the form P (x) = ∃yR(x, y) for a recursive predicate
R(x, y) on N × N.

Lemma 14. For any right-computable number β there is
a recursive predicate R(x, y) on N × N such that β is com-
putable relative to P (x) = ∃yR(x, y) and vice versa.

Conversely, for any computable predicate R(x, y) on N×N

and for any interval (a, b) ⊂ R, there is a right-computable
number β ∈ (a, b) such that the predicate P (x) = ∃yR(x, y)
is computable relative to β and vice-versa.

The proof is quite straightforward and can be found in the
[11]. For example, let P (x) = ∃yR(x, y) for a computable

R(x, y). The number β = 1 − ∑

P (x)=1 4−x is right com-

putable, since the computable sequence

βn = 1 −
∑

x≤n,∃y≤nR(x,y)

4−x

is non-increasing and converges to β. It is easy to see that
P (x) is computable relative to β and vice-versa. The next
lemma characterizes the conformal radii r(θ) for computable
θ’s.

Lemma 15. A number r ∈ [0, 1
4
] is a conformal radius

r = r(θ) for some computable θ if and only if r is right-
computable.

Lemmas 10, 15 and 14 together imply Theorem 2.

Proof. (of Theorem 2). We will only prove the first
part here. Note that the first part gives the interesting
constructive non-computability results and implies Theo-
rem 1. Let R(x, y) be any computable predicate on N2,
and let P (x) ≡ ∃yR(x, y). By Lemma 14 there is a right-
computable number r ∈ [0, 1

4
] such that r is computable

relative to P (x) and vice-versa. By Lemma 15, r = r(θ)
is the conformal radius of the Siegel disc of Je2πiθ for some
computable θ. Finally, by Lemma 10 this implies that r is
computable relative to Jα and vice-versa for α = e2πiθ. α
is computable, as it is given as a computable function of θ.
Thus P (x) is computable relative to Jα and vice-versa for a
computable α.

In the remainder of the section we outline the proof of
Lemma 15, which is the main technical contribution of the
paper. The full proof can be found in [11]. We will only
discuss the “r is right-computable ⇒ it is the conformal
radius r = r(θ) for some computable θ”, this is the more
difficult direction that gives us the main negative result. In
the proof we explicitly compute θ given the sequence rn ց r.

We compute a sequence of θn’s such that θn → θ, and
|θn − θ| < 2−n, thus computing θ. The elements of the
sequence are given by their continued fraction expansion.
The expansion is given by a finite sequence of integers In =
[a1, . . . , amn

] followed by an infinite sequence of 1’s. Thus
θn = [a1, a2, . . . , amn

, 1, 1, . . .]. The key ingredient of the
proof is our ability to decrease r(θ) by any given controlled
amount ε, while changing θ = [a1, a2, . . .] by an arbitrarily
small δ. Thus we constructively obtain a sequence such that
|θn − θ| < 2−n, and r(θn) ց r. The only thing we have
to make sure is that r(θ) = r – that is, that r(lim θn) =
lim r(θn). The “controlled drop” is achieved by the following
lemma.

Lemma 16. For any given initial segment I = [a0, a1, . . . ,
an] and m0 > 0, write ω = [a0, a1, . . . , an, 1, 1, 1, . . .]. Then
for any ε > 0, we can uniformly compute m > m0, an inte-
ger t and an integer N such that if we write β = [a0, a1, . . . ,
an, 1, 1, . . . , 1, N, 1, 1, . . .], where the N is located in the n +
m-th position, we have

r(ω) − 2ε < r(β) < r(ω) − ε, (1)

Φ(β) > Φ(ω), (2)

and for any γ = [a0, a1, . . . , an, 1, 1, . . . , 1, N, 1, . . . , 1,
cn+m+t+1, cn+m+t+2, . . .],

Φ(γ) > Φ(ω) − 2−n. (3)

Condition (1) guarantees the drop, while conditions (2)
and (3) are needed in order for the construction to work
at the limit. The proof of the lemma can be found in
[11]. To see why, in principle, such a drop is possible, re-
call that the function υ(ω) = Φ(ω) + log r(ω) is continu-
ous, hence if we keep β very close to ω, a controlled drop
in r(ω) should correspond to a controlled increase in Φ(ω).
Recall that for β = [b1, b2, . . .], with βk = [bk, bk+1, . . .],

Φ(β) =
∞

∑

i=1

β1β2 . . . βi−1 log
1

βi

. Denote by βN , the result of

substituting the k-th entry of the continued fraction expan-
sion bk with N for some very big N , then βi ≈ βN

i except
for i = k, we have

Φ(βN) =
∞

∑

i=1

βN
1 βN

2 . . . βN
i−1 log

1

βN
i

≈

∞
∑

i=1,i6=k

β1β2 . . . βi−1 log
1

βi

+ βN
1 βN

2 . . . βN
k−1 log βN

k ≈

∞
∑

i=1,i6=k

β1β2 . . . βi−1 log
1

βi

+ β1β2 . . . βk−1 log N. (4)

Note that βi are all smaller than 1, and in fact βiβi+1 < 1/2
for all i, hence by making k big enough we can always make
sure that we can select N to get just the right increase. A
“drop” in r(ω) using a big N is illustrated on Fig. 2(a).

To complete the proof of Lemma 15, we begin with γ0 =
[1, 1, . . .] for which r(γ0) > 1

4
. We then perform a series

of drops to obtain a sequence γk = [Ik, 1, 1, . . .], where Ik

is the initial segment of the continued fraction for γk, such
that (i) Ik+1 is the extension of Ik, (ii) rk + 2−k < r(γk) <
rk +2−k+1, and (iii) we can pass to the limit, for γ = lim γk,
r(γ) = lim r(γk). Then γ is computable, since to approx-
imate it with precision 2−n it suffices to know the first
2n terms of the continued fraction expansion, and r(γ) =
lim rk = r.

A Non-Computable Jz2+αz with a poly-time
computable α

The construction above contains a single step for which we
can make no estimates on how long it would take. The
problem is that while we know that a β satisfying (1) from
Lemma 16 exists, the only way to check that is to actually
compute r(β) – a process that could take a very long time.
Assuming the Computability of υ Conjecture, r(θ) and Φ(θ)
are computable relative to each other. Hence in Lemma
16(1) it suffices to assure the correct drop in Φ(θ). Unlike
r(θ), Φ(θ) has an explicit formula, which is relatively easy
to evaluate.

If we have to deal with Φ(θ) instead of r(θ) we can assure
that the limit of the process in Lemma 16 is poly-time com-
putable. During one step as in the lemma we first choose
a very big m. Setting the next m terms of the continued
fraction expansion of ω sets the next Θ(m) of the bits in
its binary expansion. This gives us time poly(m) to eval-
uate the number N , which is possible. The details of the
construction are outlined in [11].

Figure 2: (a) a drop of the conformal radius r(ω) when switching from ω2 = [3, 20, 1, 1 . . .] (gray) to ω3 =
[3, 20, 200, 1, 1 . . .] (black); (b) the first 70 images of S (black) separate 0 from the boundary of the Siegel disc
with θ = [3, 20, 1, 1 . . .]. The action of pα on the Siegel disc conjugates to a rotation by angle 2πθ on the unit
disc. The first few images of S are highlighted, note that the rotation is by slightly less then 1/3 of a circle

5. FILLED JULIA SETS ARE
COMPUTABLE

We have seen that quadratic Julia sets may not be com-
putable in some cases. Surprisingly, the filled Julia set Kα

is always computable. This has previously been known for
all cases but the case when there is a Siegel disc [3] – i.e. the
cases when Jα is also computable. It remained open whether
Kα is always computable when there is a Siegel disc. Here
we give an affirmative answer to this question.

An instructive example is the proof that Kα with no in-
terior is computable. In this case Jα = Kα. According to
Definition 6 the basic decision we should be able to make
is given a dyadic point d ∈ C and a radius 2−n to decide
whether B(d, 2−n) intersects Kα or if B(d, 2 · 2−n) is dis-
joint from Kα. One way of presenting such an algorithm
is by giving two programs A and B such that at least one
of them always terminates, and whenever a program termi-
nates it outputs an acceptable answer.

Program A consists of an infinite loop that on iteration k
computes all the periodic orbits of period k within an error of
2−n−2. If d is 2 · 2−n-close to one of the orbits, the program
terminates and outputs 1. By Theorem 9, periodic orbits
are dense in Kα and if d is 7

4
· 2−n-close to Kα, Program A

will terminate. Since all the periodic orbits are in Kα, the
program always outputs a valid answer when it terminates.

Program B consists of an infinite loop that on iteration k
approximates the set pk

α(B(d, 3
2
·2−n)). If the image escapes

the ball B(0, 4 + |α|2) (i.e. the image escapes to ∞), then
the program terminates and outputs 0. If B(d, 3

2
· 2−n) is

disjoint from Kα, its image will eventually escape to ∞, and
the program will terminate with a valid answer. Here we use
the fact that Kα has empty interior.

Thus in the case when Kα has empty interior, running
programs A and B in parallel suffices to compute Kα. This
is not the case, however when Kα has a Siegel disc. It is
possible that a point d is far from the Julia set (hence Pro-
gram A never terminates), but is inside Kα (hence program
B never terminates). Thus we need a program C that ter-
minates and outputs 1 when B(d, 2−n) is completely inside
Kα. Here we use the fact from Theorem 9 that Jα (and

hence Kα) is connected in the Siegel case.
The Siegel disc has a periodic orbit o in the middle. The

orbit o can be specified using finite amount of information.
Let o′ be any other periodic orbit. We know that o′ is also
in Kα. Kα is connected, hence any set A separating o from
o′ must intersect Kα.

Program C consists of an infinite loop that on iteration
k approximates the set Ak = ∪k

i=0p
i
α(B(d, 3

2
· 2−n)). If Ak

covers o or separates o from o′ the program terminates and
outputs 1. Kα is invariant under the action of pα, hence if
Ak separates o from o′ it implies that Ak∩Kα 6= ∅, implying
that B(d, 3

2
· 2−n) ∩ Kα 6= ∅ by the invariance of Kα under

pα, thus the algorithm outputs a valid answer.
It remains to see that Program C terminates whenever

B(d, 2−n) is inside Kα. Recall that the action of pα on the
Siegel disc ∆ conjugates to a rotation by an irrational angle
θ on a disc D. The set A = B(d, 2−n) in ∆ corresponds to
some open set B in D, and a union of finitely many images of
B under the rotation by angle θ will separate the boundary
of D from its center. This corresponds to union of images
of A separating o from points on the boundary of ∆, and in
particular from o′. The situation is illustrated on Fig. 2(b).
Thus Program C will terminate in this case.

6. CONCLUSION AND OPEN PROBLEMS
We have studied the quadratic Julia sets as an archetypi-

cal example of a global structure (a repeller in this case) aris-
ing in a non-linear dynamical system. A surprising finding
is that even when the coefficients of the quadratic polyno-
mial are computable, its Julia set may be non-computable.
Thus, answering global questions even in well-understood
dynamical systems may be impossible in practice.

Since quadratic polynomials acting in C may be viewed
in many ways as basic examples of non-linear dynamical
systems, it is reasonable to expect that more complicated
systems would present even more examples of non-computa-
bility. Many exciting directions of study are open here. For
instance, it should be straightforward to generalize our re-
sults to polynomials of higher degrees. On the other hand, it
could prove very challenging to study the computability and

complexity questions in a complex (or real) dimension higher
than one. We note that these studies have a direct practical
importance, as numerical modeling remains the main em-
pirical tool in the study of dynamics.

Our study has led us to use analytic tools which only
became available in dynamics in the last couple of years.
Surprisingly also, the sharpness of our results suggests that
nothing less would suffice. We could thus expect that the
study of computability problems could lead to new devel-
opments in the analytic theory of dynamical systems. Con-
versely, our results suggest new avenues of study in com-
putability theory itself. For instance, the Yoccoz’ function
Φ is an intriguing example of a “naturally occurring” non-
computable real function. It’s simple analytic form, and
direct connection to number theory invites further study.

A direction in which there is much room for further de-
velopment is studying the computational complexity of Julia
sets. For example, we now know that all quadratic Cremer
Julia sets are computable. However, no informative pictures
of these sets have been produced to date. Still, there are no
complexity lower bounds to rule out the chance that very
efficient algorithms for these sets are waiting to be discov-
ered (and indeed, the recent work [10] seems to suggest this
possibility).

Acknowledgments
We would like to thank John Milnor for posing the ques-

tion of computability of filled Julia sets to us. The first
author is grateful to Stephen Cook for the many useful dis-
cussions on the subject.

7. REFERENCES
[1] E. Asarin, O. Maler, and A. Pnueli. Reachability

analysis of dynamical systems with piecewise-constant
derivatives. Theor. Comp. Sci., 138:35–66, 1995.

[2] S. Banach and S. Mazur. Sur les fonctions calculables.
Ann. Polon. Math., 16, 1937.

[3] I. Binder, M. Braverman, and M. Yampolsky. Filled
julia sets with empty interior are computable. Journ.
of FoCM, to appear, 2007.

[4] E. Bishop and D. S. Bridges. Constructive Analysis.
Springer-Verlag, Berlin, 1985.

[5] L. Blum, F. Cucker, M. Shub, and S. Smale.
Complexity and Real Computation. Springer-Verlag,
New York, 1998.

[6] V. Brattka. Plottable real number functions. In Marc
Daumas and et al., editors, RNC’5 Real Numbers and
Computers, pages 13–30. INRIA, September 2003.

[7] V. Brattka and K. Weihrauch. Computability of
subsets of euclidean space I: Closed and compact
subsets. Theoretical Computer Science, 219:65–93,
1999.

[8] M. Braverman. Hyperbolic Julia sets are poly-time
computable. Electr. Notes Theor. Comput. Sci.,
120:17–30, 2005.

[9] M. Braverman. On the complexity of real functions. In
Proceedings of 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2005),
23-25 October 2005, Pittsburgh, PA, USA, pages
155–164, 2005.

[10] M. Braverman. Parabolic julia sets are polynomial
time computable. Nonlinearity, 19(6):1383–1401, 2006.

[11] M. Braverman and M. Yampolsky. Computability of
Julia sets. e-print:
http://www.arxiv.org/abs/math.DS/0610340, 2006.

[12] M. Braverman and M. Yampolsky. Non-computable
Julia sets. Journ. Amer. Math. Soc., 19(3):551–578,
2006.

[13] X. Buff and A. Chéritat. The Brjuno function
continuously estimates the size of quadratic Siegel
disks. Annals of Math., 164(1):265–312, 2006.

[14] P. Collins. On the computability of reachable and
invariant sets. In IEEE Conf. on Decision and
Control, pages 4187–4192, 2005.

[15] A. Douady and J. H. Hubbard. Etude dynamique des
polynômes complexes: I-II. Technical Report
84-02,85-04, Pub. Math. d’Orsay, 1984.

[16] P. Hertling. The effective Riemann mapping theorem.
Theor. Comp. Sci., 219(1-2):225–265, 1999.

[17] A. Katok and B. Hasselblatt. Introduction to the
modern theory of dynamical systems. Cambridge
University Press, Cambridge, 1995.

[18] K. Ko. Complexity Theory of Real Functions.
Birkhäuser, Boston, 1991.

[19] P. Koiran, M. Cosnard, and M. Garzon.
Computability with low-dimensional dynamical
systems. Theor. Comp. Sci., 132:113–128, 1994.

[20] P. Koiran and C. Moore. Closed-form analytic maps in
one and two dimensions can simulate universal turing
machines. Theor. Comp. Sci., 210:217–223, 1999.

[21] D. Lacombe. Classes récursivement fermés et fonctions
majorantes. C. R. Acad. Sci. Paris, 240:716–718, 1955.

[22] S. Marmi, P. Moussa, and J. C. Yoccoz. The Brjuno
functions and their regularity properties. Commun.
Math. Phys., 186:265–293, 1997.

[23] S. Mazur. Computable analysis, volume 33. Rosprawy
Matematyczne, Warsaw, 1963.

[24] J. Milnor. Dynamics in one complex variable.
Introductory lectures. Princeton University Press, 3rd
edition, 2006.

[25] C. Moore. Unpredictability and undecidability in
dynamical systems. Phys. Rev. Lett., 64:2354–2357,
1990.

[26] R. Rettinger. A fast algorithm for julia sets of
hyperbolic rational functions. Electr. Notes Theor.
Comput. Sci., 120:145–157, 2005.

[27] R. Rettinger and K. Weihrauch. The computational
complexity of some Julia sets. In Proceedings of the
35th Annual ACM Symposium on Theory of
Computing, June 9-11, 2003, San Diego, CA, USA,
pages 177–185, 2003.

[28] A. M. Turing. On computable numbers, with an
application to the entscheidungsproblem. Proceedings,
London Mathematical Society, pages 230–265, 1936.

[29] K. Weihrauch. Computable Analysis. Springer-Verlag,
Berlin, 2000.

[30] A. Yao. Classical physics and the Church-Turing
Thesis. Technical Report TR02-062, Electronic
Colloquium on Computational Complexity (ECCC),
2002.

[31] N. Zhong. Recursively enumerable subsets of Rq in two
computing models: Blum-Shub-Smale machine and
Turing machine. Theor. Comp. Sci., 197:79–94, 1998.

