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Abstract. A locally connected quadratic Siegel Julia set has a simple explicit topological
model. Such a set is computable if there exists an algorithm to draw it on a computer
screen with an arbitrary resolution. We constructively produce parameter values for Siegel
quadratics for which the Julia sets are non-computable, yet locally connected.

1. Preliminaries

In this paper, we will assume that the reader is familiar with the concept of computability
of a subset of Rn and its applications to Julia sets of rational functions. We refer the reader
to our paper [BY08a] and the book [BY08b] for an introduction to computability of functions
and sets in Rn, as it applies to the study of Julia sets. A detailed treatment of computability
over the reals is found in [Wei00].

We will denote
fc(z) = z2 + c, and Pθ(z) = z2 + e2πiθz

two parameterizations of the quadratic family. The latter is more convenient in studying
quadratics with a neutral fixed point. We denote Jc, Jθ and Kc, Kθ the Julia sets and the
filled Julia sets respectively. Suppose, a polynomial fc has a periodic Siegel disk ∆ centered
at a point ζ. Consider a conformal isomorphism φ : D 7→ ∆ mapping 0 to ζ. The conformal
radius of the Siegel disk ∆ is the quantity

r(∆) = |φ′(0)|.
A polynomial Pθ with θ ∈ R has a neutral fixed point at the origin. When this point is of
Siegel type, we denote ∆θ the Siegel disk around it, and set

r(θ) = r(∆θ).

For all other values of θ ∈ R we set r(θ) = 0.
Informally, the Julia set Jc (or Jθ) is computable if, given arbitrarily good approximations

of the parameter c (or θ), a Turing Machine can output images of Jc (or Jθ) with an arbitrarily
high resolution. The parameter is provided to the machine via an oracle, which the machine
can query with an arbitrarily high precision. In [BY06] we showed that, surprisingly, there
exist parameters c for which the Julia set Jc is not computable. In [BY08a] we demonstrated
that such parameters can themselves be computed with an arbitrary precision by an explicit
algorithm. The practical implications of these results are quite striking: there are computable
values of c for which Jc cannot be visualized numerically.

Date: October 7, 2008.
This research was partially conducted during the period the first author was employed by the Clay

Mathematics Institute as a Liftoff Fellow.
The second author’s research is supported by NSERC operating grant.

1



As we showed in [BBY07], a quadratic polynomial with an uncomputable Julia set neces-
sarily possesses a cycle of Siegel disks. Further, we demonstrated in [BBY07]:

Theorem 1.1. The set Jc is non-computable if and only if it possesses a periodic Siegel disk
∆, whose conformal radius r(∆) cannot be computed with an oracle access to the value of c.

For a parameter θ ∈ R, the Julia set Jθ is computable by a Turing Machine with an oracle
for θ if and only if the number r(θ) is computable with an oracle for θ.

A number r ∈ R is called right-computable if there exists a Turing Machine which computes
a non-decreasing sequence of rationals

rn ↘ r.

A left-computable real is defined in a similar way, replacing a non-decreasing sequence with
a non-increasing one. The set of right computable reals is larger than the set of computable
reals (in fact, a real number is computable if and only if it is simultaneously right- and
left-computable). The precise form of the main result of our paper [BY08a] is:

Theorem 1.2. Let a real number

r ∈ (0, sup
θ∈T

r(θ)).

Then r = r(θ) is the conformal radius of a Siegel disk ∆θ with a computable parameter θ if
and only if r is right-computable.

By Theorem 1.1, any right-computable number that is not computable gives rise to a non-
computable Julia set with a computable parameter θ.

It is natural to expect that the picture of a Julia set which cannot be effectively visualized
is topologically complicated. As we have shown in [BY06], the topology of some such sets
is indeed pathological. However, in [BY08b] (Theorem 6.16) we showed that there exist
parameters θ for which the Julia set Jθ is non-computable and locally connected. Such sets
have simple and explicit topological models. Our proof was non-constructive in an essential
way, so it was not clear whether a value θ with these properties might be computable.

In this paper we answer in the affirmative:

Main Theorem. There exists a computable value of θ for which the Julia set Jθ is non-
computable and locally connected.

Thus the picture of Jθ is “nice” (has an explicit and simple topological model), the pa-
rameter is “nice” (computable), and yet no algorithm to draw Jθ exists. The proof of the
Main Theorem will require both sophisticated tools of Complex Dynamics and Renormal-
ization Theory, and a new approach to constructing a non-computable Julia set. We begin
by outlining useful facts about locally connected Siegel Julia sets in the next section.

2. Locally connected quadratic Julia sets

2.1. Local connectedness of sets in C. Recall, that a topological space X is locally
connected if for each point x ∈ X there exists a sequence of neighborhoods Ui(x) 3 x such
that:

(1) Ui(x) is open and connected in X;
(2) ∩Ui(x) = {x}.
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We remark that the condition (1) can be weakened:

(1a) Ui(x) is connected in X and contains an open neighborhood around x.

The main significance of local connectedness in the study of quadratic Julia sets comes
from the following construction. Consider a quadratic polynomial fc(z) = z2 + c with a
connected Julia set. The Riemann mapping

Φ : Ĉ \Kc → Ĉ \ U
is uniquely determined by the normalization Φ(∞) = ∞ and Φ(z) ∼ z for z → ∞. It then
coincides with the Böttcher coordinate of fc(z) at infinity:

(2.1) Φ(fc(z)) = (Φ(z))2.

As the map z 7→ z2 preserves the polar coordinate grid on Ĉ \ U, the equation (2.1)
implies that the preimages of polar coordinate lines under Φ form an invariant grid for fc.
In particular, each radial curve

Rθ ≡ Φ−1({re2πiθ| r ∈ (1,∞)})
is mapped onto the curve Rθ′ by fc, with θ′ ≡ 2θ modZ. These curves are known as the
external rays of Jc. For a fixed angle θ, as r → 1+, the points re2πiθ approach the Julia set
Jc. We say that a ray Rθ lands at a point z ∈ Jc if

lim
r→1+

Φ−1(re2πiθ) = z.

In this case, the point z is accessible from infinity.
The equipotential curve Er for r > 0 is the preimage

Er ≡ Φ−1({e2πiθ·r| θ ∈ T}).
It is mapped to E2r by fc.

It is well-known that a connected Julia set may fail to be locally connected. In particular,
the following theorem was proved by Doaudy and Sullivan [Sul83], and independently by
Lyubich [Lyu86]:

Proposition 2.1. If a polynomial fc has a periodic point of Cremer type, then its Julia set is
not locally connected. Moreover, if fc has a cycle of Siegel disks, and Jc is locally connected,
then necessarily the critical point 0 of fc is contained in the boundary of one of the periodic
Siegel disks.

In the case when the Julia set Jc is locally connected, a key to its topological structure is
given by the Theorem of Carathéodory. Recall that a set K ⊂ C is full if its complement is
connected in C:

Caratheodory’s Theorem. For a connected compact and full set K ⊂ C denote Φ the
Riemann mapping

Φ : Ĉ \K → Ĉ \ U with Φ(∞) = ∞ and Φ′(∞) = 1.

Then the following conditions are equivalent:

• the set K is locally connected;
• the set J = ∂K is locally connected;
• the inverse mapping Φ−1 extends continuously to a map S1 → J ;
• every radial ray Φ−1({re2πiθ| r > 1}) lands at a point of J .
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As an immediate corollary we have the following:

Corollary 2.2. Assume that the Julia set of fc is connected and locally connected. Then
the inverse Böttcher map Φ−1 continuously extends to a surjection ψ : S1 → Jc which is a
semi-conjugacy

ψ(z2) = fc(ψ(z)).

The parametrization
γc : θ 7→ z = exp(2πiθ) 7→ ψ(z) ∈ Jc

is known as the Carathéodory loop of Jc.

2.2. Locally connected Siegel Julia sets. As was first shown by Herman [Her85], there
exist quadratic polynomials in the family Pθ(z) = z2 + e2πiθz with a Siegel disk ∆θ at the
origin, such that the critical point

pθ = −e2πiθ/2 /∈ ∂∆θ.

By Proposition 2.1 in this case Jc is not locally connected.
There exist, however, topologically well-behaved examples with Siegel disks as we will see

in the following section.
Assume now that Pθ has a Siegel disk with the critical point pθ = −e2πiθ/2 in the boundary.

Assume further that this point is accessible from infinity. In this case, Jθ \ {pθ} has two
connected components; we denote L0 the one which does not contain ∆θ. A limb of generation
n is a component of P−n

θ (L0).
There exist various natural ways of labeling limbs of generation n. For instance, denote

R1 and R2 the two external rays which land at pθ, and set

Γ = R1 ∪R2 ∪ {pθ}.
Then we have two well-defined branches of the inverse map P−1

θ mapping C \ Pθ(Γ) to one
of the components of C \ Γ. Let us denote ψ0 the inverse branch which fixes ∆θ, and ψ1 the
other one. We can then distinguish the limbs of the same generation by the order in which
the two inverse branches were applied, so for σ̄ ∈ {0, 1}n, we have

Lσ̄ = ψσn ◦ · · · ◦ ψσ1(L0).

Theorem 2.3. The Julia set Jθ is locally connected if and only if the following three prop-
erties hold:

(I) ∂∆θ is a Jordan curve, and contains pθ;
(II) the point pθ is accessible from infinity;

(III) there exists a positive function s : N→ R with s(n) −→
n→∞

0 such that the diameter of

each limb of generation n is bounded from above by s(n).

The necessity of the condition (III) is not difficult to see. If there existed a non-trivial
accumulation set of an infinite sequence of limbs (a “ghost limb”) then all its points would
have to correspond to a single external ray Rθ, in violation of Carathéodory’s Theorem.

As for the sufficiency of conditions (I)-(III), the limbs themselves can be used to construct
a basis of connected neighborhoods. For more details, see e.g. [Yam99].

Note that, if Jθ is locally connected, then by Theorem 2.3 (II) and Carathéodory’s Theorem
the conformal linearizing coordinate

φθ : U→ ∆θ
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Figure 1. On the left is the filled Julia set of the quadratic polynomial

Pθ with θ =
1

1 +
1

1 + · · ·

. The critical point pθ is on the boundary of the

Siegel disk; the two external rays landing at pθ and the initial limb L0 are also
indicated. On the right is an illustration of the topological model of Jθ.

extends continuously to the boundary. Hence the restriction

Pθ : ∂∆θ → ∂∆θ

is conjugated by a homeomorphic change of coordinates φθ : S1 → ∂∆θ to an irrational
rotation of the circle. As pθ ∈ ∂∆θ, we obtain the following:

Proposition 2.4. If Jθ is locally connected, then

∂∆θ = Postcrit(Pθ).

If Jθ is locally connected, then a topological model for the dynamics of Pθ : Jθ → Jθ can be
constructed similarly to what is done in [Thu] and [Dou93]. However, if we are interested
in constructing a topological model of Jθ without the dynamics, the exercise becomes rather
trivial. We can, for instance, replace the Siegel disk itself, as well as its every preimage, with
a round circle. Each of the circles has a countable set of circles attached to its boundary, at a
dense set of points. Putting them together has to be done so that there are no intersections
not only of the circles themselves, but of the closures of infinite chains of circles.
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3. Examples of computable and locally connected Siegel Julia sets:
parameters of bounded type

An irrational angle θ is said to be of type bounded by B if it is represented by an infinite
continued fraction with positive terms

θ = [a0, a1, a2, . . .] such that sup ai ≤ B.

The union of all numbers of a bounded type are Diophantine numbers of exponent 2; a zero
measure subset of T. As we have shown in [BBY07]:

Theorem 3.1. If θ is of a bounded type, then r(θ) is a computable real. Moreover, all such
r(θ) can be computed by a single algorithm with a single parameter – an upper bound B on
the coefficients of the continued fraction of r(θ).

To outline the proof of this below, we recall that Siegel quadratic Julia of bounded type
sets may be constructed by means of quasiconformal surgery (cf. [Dou88]) on a Blaschke
product

fγ(z) = e2πiτ(γ)z2 z − 3

1− 3z
.

This map homeomorphically maps the unit circle T onto itself with a single (cubic) critical
point at 1. The angle τ(γ) can be uniquely selected in such a way that the rotation number
of the restriction ρ(fγ|T) = γ.

For each n, the points

{1, fγ(1), f 2
γ (1), . . . , f qn+1−1

γ (1)}
form the n-th dynamical partition of the unit circle. The following result is due to Swiatek
and Herman (for the proof see e.g. Theorem 3.1 of [dFdM99]):

Theorem 3.2 (Universal real a priori bound). There exists an explicit constant B > 1
independent of γ and n such that the following holds. Let γ ∈ R \Q and n ∈ N. Then any
two adjacent intervals I and J of the n-th dynamical partition of fγ are B-commensurable:

B−1|I| ≤ |J | ≤ B|I|.
Proposition 3.3 ([Her86]). For each bounded type γ = [a0, . . . , ak, . . .] the Blaschke product
fγ is K1-quasisymmetrically conjugate to the rotation Rγ : x 7→ x + γ modZ. The quasisym-

metric constant may be taken as K1 = (2 sup ai)
10B2

.

Let us now consider the mapping Ψ which identifies the critical orbits of fγ and Pγ by

Ψ : f i
γ(1) 7→ P i

γ(cγ).

We have the following (see, for example, Theorem 3.10 of [YZ01]):

Theorem 3.4 (Douady, Ghys, Herman, Shishikura). The mapping Ψ extends to a
K-quasiconformal homeomorphism of the plane C which maps the unit disk D onto the
Siegel disk ∆γ. The constant K may be taken as the quasiconformal dilatation of any global
quasiconformal extension of the K1-qs conjugacy of Proposition 3.3. In particular, K ≤ 2K1.

Elementary combinatorics implies that each interval of the n-th dynamical partition con-
tains at least two intervals of the (n + 2)-nd dynamical partition. This in conjunction with
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Theorem 3.2 implies that the size of an interval of the (n + 2)-nd dynamical partition of fγ

is at most τn where

τ =

√
B

B + 1
.

Hence, setting
Ωn = {P i

γ(cγ), i = 0, . . . , qn+2},
by Theorem 3.4,

(3.1) distH(Ωn, ∂∆γ) < Kτn.

We quote:

Lemma 3.5 (see [BY08a]). Let U be a simply-connected bounded subdomain of C containing
the point 0 in the interior. Suppose V ⊂ U is a simply-connected subdomain of U , and
∂V ⊂ B(∂U, ε). Let r(U, 0) denote the conformal radius of U with respect to 0, and similarly
for r(V, 0). Then

r(U, 0)− r(V, 0) ≤ 4
√

r(U, 0)
√

ε.

Moreover, denote F (x) = 4x/(1 + x)2. Then

r(V, 0) ≤ r(U, 0)F

(
ρ(V, 0)

ρ(U, 0)

)
.

In combination with (3.1), the above lemma yields an algorithm for computing the value
of r(θ) with an arbitrary desired precision. This finishes the sketch of proof of Theorem 3.1.

The existence of locally connected Siegel Julia sets was first demonstrated by Petersen
[Pet96]. A different proof was also given by the second author in [Yam99]:

Theorem 3.6 ([Pet96]). If θ is an irrational number of bounded type, then the Julia set Jθ

is locally connected.

A work of Petersen and Zakeri [PZ04] later extended this result to a class of rotation
numbers θ having full measure in S1.

4. Control of the postcritical set of a Siegel quadratic

4.1. Cylinder renormalization. Cylinder renormalization is the tool which we will use to
gain control of the postcritical set of Pθn in the above discussion. It was introduced by the
second author in [Yam02], and applied to maps with Siegel disks in [Yam08]. We refer the
reader to these two works for a more detailed description.

To define the procedure, we start with an analytic map f defined in a neighborhood W of
the origin, and of the form

f(z) = e2πiθz + o(z),

where θ is some Brjuno number. Recall that {pn/qn} denote its rational convergents. Fix
some n ≥ 0. Assume that there exists a simple arc l ⊂ W which connects a fixed point
a of the iterate f qn to 0, and has the property that f qn(l) is again a simple arc whose
only intersection with l is at the two endpoints. Let Cf be the topological disk in C \ {0}
bounded by l and f qn(l). We say that Cf is a fundamental crescent if the inverse branch
f−qn|Cf

mapping f qn(l) to l is defined and univalent, and the quotient of

Cf ∪ f−qn(Cf ) \ {0, a}
7



by the iterate f qn is conformally isomorphic to C/Z.

f∆
Cf

0

1a

qnf

l

(1)=0h'

χ

0

∆ h

Figure 2. Schematics of cylinder renormalization

For a point z in the fundamental crescent, consider the first return map Rf (z) given by
the smallest iterate f i(z) which is again contained in Cf , assuming such an i exists. It will,
of course, exist, and will be locally constant for all z in the intersection of Cf with the Siegel
disk ∆f .

Let us now select a conformal isomorphism

κ :
(
Cf ∪ f−qn(Cf ) \ {0, a}

)
/fqn

'−→ C/Z,

which sends the puncture at {0} to the “upper” end +i · ∞ of C/Z. Its composition with
the exponential map χ(z) = exp(2πiκ(z)) maps the quotient of the crescent to the complex
plane punctured at the origin. Consider the map

h = χ ◦Rf ◦ χ−1

It is not difficult to see that it is an analytic function defined in a neighborhood of the origin.
Moreover, filling in the removable singularity at 0, we have:

h = exp(2πiθ′)z + o(z), with θ′ = Gn+1(θ),

where G(θ) =
{

1
θ

}
is the Gauss map. How well-defined is h? First, and most crucially, the

Liouville’s Theorem implies that the only flexibility we have in the choice of χ is in post-
composing it with a homothety around 0. A different choice of Cf could, a priori produce a
different h. However,
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Proposition 4.1. Every other fundamental crescent C ′
f with the same endpoints as Cf , and

such that C ′
f ∪ Cf is a topological disk, produces the same renormalized map h (defined up

to a change of coordinates by a homothety).

Now, let us suppose that θ is of bounded type, and the Siegel disk ∆f is contained in the
domain W of f . Further, let the boundary of ∆f contain a unique critical point of f . Then h
is also going to have a single critical point on the boundary of its Siegel disk. Let us uniquely
specify χ by putting this point at 1. We then call the map h a cylinder renormalization of
f with period qn.

The boundary of the Siegel disk of h is obtained by a conformal “blow-up” of an arc of the
boundary of ∆f . The cylinder renormalization acts as a zoom-in into the postcritical set.

Now let us specialize to the case of quadratic polynomials Pθ of a bounded type:

Theorem 4.2. Let θ be of a bounded type. Let Pθ be as above. There exists a sequence gn,
n ∈ N of cylinder renormalizations of Pθ with the following properties.

(I) For each n, the map gn is a cylinder renormalization of Pθ with period qn. Thus gn

has a Siegel disk with rotation number Gn+1(θ) centered at the origin, whose boundary
is a quasicircle, containing the critical point 1.

(II) Denoting Cn the fundamental crescent of the respective renormalization, we have

dn = sup
z∈Cn

dist(z, ∆θ) → 0.

Moreover, dn is K-commensurable with Cn ∩ ∂∆θ for a universal K > 0. Hence

dn < Ab−n for some A > 0, and b > 1.

(III) Finally, there exists k ∈ N such that for all n1 and for n2 ≥ n1 + k, the map gn2 is a
cylinder renormalization of gn1.

What can we say about the sequence of the cylinder renormalizations thus obtained? A
recent result of Inou and Shishikura [IS07] implies that under an additional assumption on
θ all of these analytic maps belong to a compact family:

Theorem 4.3. There exist N0 ∈ N, a pair of topological disks W̃ c W 3 {0, 1}, an open
set V in the Banach space of analytic maps in W with the sup-norm, and a compact subset
Y b V such that the following is true.

• Let θ = [a1, a2, . . .] ∈ (0, 1) \Q with ai ≥ N0. For every f ∈ V with f ′(0) = e2πiθ we
have the following. The map f is cylinder renormalizable with period 1 = q0, and the
corresponding cylinder renormalization

g(z) = exp(2πiG(θ))z + o(z) ∈ Y .

Moreover, g analytically extends to the larger domain W̃ .
• Further, consider the quadratic polynomial f = Pθ(z). Set gn to be the sequence of

cylinder renormalizations of f as in Theorem 4.2. Then there exists j ∈ N such that
gj|W ∈ Y.

As an easy corollary, note that:
9



Corollary 4.4. Let g(z) and W be as in the above theorem. Then the critical orbit⋃
n≥0

gn(1) ⊂ W.

Proof. Indeed, the theorem implies that there exists an infinite sequence of cylinder renor-
malizations of the restriction g|W . Hence, iterates (g|W )n(1) are defined for arbitrarily large
values of n.

¤

5. Modifying the conformal radius of a Siegel disk

Let us recall, that for an irrational θ ∈ T the Yoccoz’s Brjuno function Φ(θ) is defined as
follows. Inductively set θ1 = θ and θn+1 = {1/θn}. In this way,

θn = [rn, rn+1, rn+2, . . .].

Then,

Φ(θ) =
∞∑

n=1

θ1θ2 · · · θn log
1

θn+1

.

Yoccoz [Yoc95] has shown that the sum

Φ(θ) + log r(θ)

is bounded from below independently of θ. Buff and Chéritat [BC06] have greatly improved
this result by showing that:

Theorem 5.1 ([BC06]). The function

(5.1) υ : θ 7→ Φ(θ) + log r(θ)

extends to R as a 1-periodic continuous function.

It is conjectured that:

Conjecture 5.2. The function υ defined by (5.1) is computable.

We note that Marmi, Moussa, and Yoccoz [MMY97] have conjectured that υ is Hölder
with exponent 1/2. This is known to be stronger than Conjecture 5.2 (see [BY08b] for
details).

We will require the following technical lemma (for a proof see [BY08a] or [BY08b]).

Lemma 5.3. Fix N ∈ N. For any given initial segment I = [a0, a1, . . . , an] and m0 > 0, write
ω = [a0, a1, . . . , an, N, N, N, . . . ]. Then for any ε > 0, we can uniformly compute m > m0, an
integer t and an integer M such that if we write β = [a0, a1, . . . , an, N, N, . . . , N,M, N, N, . . .],
where M is located in the n + m-th position, we have

(5.2) r(ω)− 2ε < r(β) < r(ω)− ε,

(5.3) Φ(β) > Φ(ω),

and for any

γ = [a0, a1, . . . , an, N,N, . . . , N,M, N, . . . , N, cn+m+t+1, cn+m+t+2, . . .],

(5.4) Φ(γ) > Φ(ω)− 2−n.
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6. Admissible perturbations of Siegel Julia sets

In the proof of the Main Theorem we will use a sequence of perturbations from last section
to “fool” all Turing Machines attempting to compute Jθ. In this section we will develop the
necessary machinery that would guarantee that the resulting limiting set is locally connected.

Let N0 be as in Theorem 4.3, and fix N > N0. An admissible irrational number θ =
[a1, a2, . . .] ∈ T has all of the coefficients ai ≥ N0, and aj = N for all sufficiently large values
of j.

One consequence of the renormalization picture we have described above is the following:

Proposition 6.1. There exists B = B(N) such that the following holds. Suppose θ is an
admissible number. Then there exists k0 ∈ N such that for all k ≥ k0, denoting gk the
cylinder renormalization of Pθ from Theorem 4.2, the boundary of the Siegel disk ∂∆gk

is a
B-quasicircle.

In fact, denoting by f̂ the fixed point of Rcyl with rotation number [N,N, N, . . .] whose
existence is postulated in the Theorem on Hyperbolicity of Renormalization, we see that the
boundary of the Siegel disk of Pθ at small scales converges to that of f̂ in Hausdorff distance.

Definition 6.1. Now let α be a Brjuno number such that Jα is locally connected. We will
say that Jβ is an admissible 2−n-perturbation of Jα if the following properties hold.

(1) The Julia set Jβ is locally connected.
(2)

distH(∂∆α, ∂∆β) < 2−n.

(3) For each n and each σ̄ ∈ {0, 1}n denoting Lα
σ̄ and Lβ

σ̄ the limbs of Jα and Jβ respec-
tively, we have

| diam(Lα
σ̄)− diam(Lβ

σ̄)| < 2−n.

(4) Consider the Riemann mapping

Ψα : U→ ∆α normalized by Ψα(0) = 0, Ψ′
α(0) = 1,

and a similarly defined Ψβ. Then

sup
z∈U

|Ψα −Ψβ| < 2−n.

(5) Similarly, denote

Φα : Ĉ \ U→ Ĉ \Kα

the Böttcher map of Pα, and Φβ the Böttcher map of Pβ. Let γ±α be the angles of
the two external rays of Jα, which land at the critical point pα, and similarly for γ±β .
Then

||Φβ(te2πiγ±β )− Φα(te2πiγ±α )|| < 2−n

in the spherical norm for t ∈ [1,∞). In particular,

|pα − pβ| < 2−n.

We have:

Theorem 6.2. Let βn be a sequence of Brjuno numbers such that, for each n, Jβn is a 2−n-
admissible perturbation of Jβn−1. Assume that βn → α, which is another Brjuno number.
Then Jα is locally connected.

11



Proof. By the property (1) of an admissible perturbation and Theorem 2.3 the boundary of
∆βn is a Jordan curve. By the Carathéodory’s Theorem, the Riemann mapping Ψβn extends
continuously to S1 = ∂U. By the properties (2) and (4) of an admissible perturbation, the
sequence

Ψβn ⇒
U

Ψα.

Applying the Carathéodory’s Theorem to Ψα, we see that ∆α is a Jordan curve.
By the properties (2) and (5) the critical point pα ∈ ∂∆α, and is bi-accessible from infinity.

By the property (3), Theorem 2.3, and considerations of continuity the diameters of the limbs
of Jα of generation n shrink to zero uniformly with n.

By Theorem 2.3 the proof is complete. ¤

We now formulate the following key consequence of the result of Inou and Shishikura (cf.
the discussion in [BC05]):

Proposition 6.3. Consider an admissible number

α = [Iα, N, N, N, . . .],

where Iα is some initial segment of the continued fraction. There exists a Turing Machine
which takes as inputs the segment Iα and a natural number ` which outputs δ > 0 and M ∈ N
such that the following holds.

Let β be a perturbation of α of the form

β = [Iα, N, N, . . . , N︸ ︷︷ ︸
m

, A1, A2, . . . , Ak, N, N,N, . . .], where m ≥ M and Ai ≥ N,

and such that

|rα − rβ| < δ.

Then

distH(∂∆α, ∂∆β) < 2−`.

Proof. The boundary of ∆α is obtained by taking the closure of the critical orbit {P n
α (1)}.

By simple considerations of continuity, there exists k0 ∈ N such that for every m ≥ k0,

∂∆α ⊂ B(∂∆β, 2−`).

By (3.1) the value of k0 can be obtained constructively, given Iα.
Let τ be any number larger than `. For the map Pα select Cn as in Theorem 4.2, (II).

Consider the arc

`n = ∂∆α ∩ Cn

of the boundary of the Siegel disk trapped inside the fundamental crescent. By the inverse
branch (Pα)−1, fixing the Siegel disk, it is rotated around the boundary. An inspection
shows: (

qn⋃
j=0

(Pα)−j(`n−1)

)⋃ (
qn−1⋃
j=0

(Pα)−j(`n)

)
⊃ ∂∆α.

Denote Wn ⊂ Cn the lift of the domain W from Theorem 4.3. Note that by Corollary 4.4,

`n ⊂ Wn.
12



By Theorem 4.2, (II), for any ν > 0, we can constructively find k1 ∈ N such that

Wn b B(∆α, 2−ν)

for n ≥ k1. An application of Koebe Distortion Theorem to pull-backs

Yn ≡
(

qn⋃
j=0

(Pα)−j(Wn−1)

)⋃ (
qn−1⋃
j=0

(Pα)−j(Wn)

)

implies the existence of k2 ∈ N such that, for n ≥ k2,

Yn ⊂ B(∆α, 2−τ ).

The explicit bound in Koebe Distrotion Theorem again allows us to obtain k2 constructively.
Set

k = k2 + |Iα|.
Now denote C ′

n, W ′
n, and Y ′

n the corresponding objects for Pβ. By considerations of
continuity, for every d we can constructively find

m(d) À n ≥ k,

such that for m ≥ m(d) the domains C ′
n, C ′

n−1 are 2−d-perturbations of Cn, Cn−1 in Hausdorff
sense.

By Corollary 4.4, we have

∆β ∩ C ′
n ⊂ W ′

n.

Select mτ large enough so that for m > mτ the previous inclusions hold, and

Y ′
n ⊂ B(Yn, 2−2τ ).

Then

∆β ⊂ B(∆α, 2−τ ).

Thus by moving the perturbation far enough to the right in the continued fraction of α, we
can guarantee that ∂∆β does not extend outside a small neighborhood of ∆α.

It remains to ensure, that ∂∆β does not have decorations which grow deep into ∆α. The
easiest way to see this is to note, that by Theorem 3.4, ∂∆α is a B-quasicircle for some
explicit B ∈ N. Hence, for every δ > 0, we can constructively find τ > 2` such that setting

Uτ = B(∆α, 2−τ ),

we have

r(Uτ , 0)− rα < δ, so that r(Uτ , 0)− rβ < 2δ.

By Proposition 3.5 applied to uniformization of Uτ , we can find δ small enough, so that

∂∆β ⊂ B(∂Uτ , 2
−`).

Taking these δ and τ , and m > mτ we have

∂∆β ⊂ B(∆α, 2−`) ∩B(∂Uτ , 2
−`) ⊂ B(∂∆α, 2−`).

¤

We now state:
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Proposition 6.4. Consider an admissible number

α = [Iα, N, N, N, . . .].

There exists a Turing Machine which takes as inputs the segment Iα and a natural number
` which outputs δ > 0 and M ∈ N such that the following holds.

Let β be a perturbation of α of the form

β = [Iα, N,N, . . . , N︸ ︷︷ ︸
m

, A1, . . . , Ak, N, N, N, . . .], where m ≥ M and Ai ≥ N,

and such that
|rα − rβ| < δ.

Then Jβ is an admissible 2−`-perturbation of Jα.

Proof. Constructively selecting M and δ to satisfy property (1) is straightforward. Prop-
erty (2) is proved in Proposition 6.3. Stronger property (4) follows by Proposition 6.3 and
Theorem 3.4. and (4)

Properties (3) and (5) follow from an explicit geometric estimate on the size of a limb of
Jα of generation n, given in [Yam99]. ¤

7. Proof of the Main Theorem

We will now use the machinery developed in Section 6 to prove the Main Theorem.
Proof overview. By Theorem 1.1 we know that computability of r(θ) is equivalent to that
of Jθ. It is thus sufficient for us to construct a parameter value θ for which Jθ is locally
connected, and no Turing Machine computes r(θ). We will do this via a diagonalization
argument. Let us make a definition:

Definition 7.1. We will say that a parameter θ fools a Turing Machine M(n) if there exists
m ∈ N such that on this input M(m) terminates, but does not output a number r with the
property

|r − r(θ)| < 2−m.

Less formally, the machine M fails to compute r(θ) by computing a wrong output for some
particular choice of the precision parameter m.

We construct a parameter θ that fools all oracle TMs attempting to compute r(θ). Let us
first recall briefly the approach to producing non-computable Julia sets of our paper [BY06].

We would begin by enumerating all oracle Turing Machines Mφ
1 , Mφ

2 , . . .. Assuming that
a machine in our list computes the conformal radius r(θ), we can fool it by modifying the
parameter θ far enough in its continued fraction, so that the conformal radius of the Siegel
disk decreases by a sufficiently large amount. Applying this idea successively to all of the
machines in our list, we end up with a sequence of parameters θk = [Ik, N, N, . . .], such that
the finite sequences I1 ⊂ I2 ⊂ . . . are nested, and such that every machine fails to compute
r(θk) starting from some k. A passage to the limit, carefully made, produces a parameter
with a non-computable Julia set.

Using the bounds of Proposition 6.4, we can ensure that the perturbations are carried
out so that the limit is locally connected (see [BY08b]). Turning this argument into a
constructive one, however, meets a logical obstacle. When we attempt to fool the machine
Mφ

k , we cannot just “simulate it on φk, see what it does, and modify the parameter to fool
14



it” – the machine Mφ
k may not terminate. In fact, we cannot know whether Mφ

k terminates
without solving the Halting Problem, which is undecidable.

To bypass this difficulty, we run the machines in parallel, and modify the parameter when
one of them does output a value r. When Mφ

k outputs an answer, then we can modify the
parameter to fool it. If it never outputs an answer, then it never gets fooled, but this is not
a problem, since a machine that never halts cannot be computing r(θ).

Proof of the Main Theorem. We enumerate all oracle Turing Machines Mφ
1 ,Mφ

2 , . . .. We will
show how to construct a parameter value θ such that none of the listed machines correctly
computes the conformal radius r(θ).

At every step k of the construction we will maintain a finite initial segment Ik of the
continued fraction expansion of the final parameter θ, and the current parameter θk =
[Ik, N, N, . . .]. The segment Ik will be an extension of Ik−1 so that the chain I1 ⊂ I2 ⊂ . . .
converges to the continued fraction expansion of θ = limk→∞ θk.

Also at every step we will maintain a finite status string Sk ∈ {0, 1}∗. The status string

attaches a status to each machine Mφ
j the algorithm is currently considering. Sk[j] = 1 means

that Mφ
j is fooled by the current parameter θk; Sk[j] = 0 means that it is undetermined,

whether θk fools Mφ
j . We also define S∗k ∈ {0, 1}ω as the infinite {0, 1}-string obtained from

Sk by appending an infinite sequence of 0’s. The limit S∗ of the sequence {S∗k} is defined as
the termwise limit (if one exists). The value S∗[j] at the limit will be 1 if the parameter θ

fools Mφ
j , and S∗[j] will be 0 if Mφ

j fails to terminate on θ. In either case, Mφ
j will fail to

compute r(θ).
We define an order relationship Sk ≺ Sl on the status sequences to be the lexicographical

order:

Sk ≺ Sl if ∃ j : S∗k [j] = 0, S∗l [j] = 1, and ∀ (i < j) S∗k [i] = S∗l [i].

In our construction, the status strings will satisfy

S1 ¹ S2 ¹ S3 ¹ . . .

Note that this means, in particular, that for each j, S∗k [j] changes its value at most 2j − 1
times as k grows. This implies that the limit

S∗ = lim
k→∞

S∗k

exists.
At step k we will be working on fooling the first k machines, thus |Sk| = k for all k. For

each j ≤ k such that Sk[j] = 0 we will maintain a value δj which will either be a positive
number, or undefined (in which case we will write δj = ⊥). This is the amount by which we
are willing to drop the conformal radius in order to fool the j-th machine. We will further
require that

if i > j then δj > 16i−jδi (if defined),

that is, the defined terms in the sequence {δj} decrease geometrically. At each step we will
also be maintaining an integer Mk that specifies beyond which location of the continued
fraction expansion we are allowed to change θk.

We will now describe the initialization and the step in the execution of our construction.
Initialization (iteration k = 0): We set I0 = [N ], S∗0 [j] = 0, δj = ⊥ for all j.
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Step k ≥ 1: We start by computing δj for j ≤ k. We compute values of δj such that
currently Sk−1[j] = 0 and δj = ⊥ (that is, the j-th machine has not been fooled, and the
value of δj is currently undefined). We compute δj > 0 in increasing order of j, 1 ≤ j ≤ k.

We choose δj that satisfies δj < 16−(i−j)δi for all i < j. We compute a δ > 0 and M j as in
Proposition 6.4 with ` = j. That is, for each β such that

(1) β is obtained from θk−1 by changing finitely many positions Am, for m > M j, in its
continued fraction expansion from N to a bigger number; and

(2) |r(θk−1)− r(β)| < δ,

the set Jβ is an admissible 2−j-perturbation of Jθk−1
. We choose δj < δ/4, we also choose

Mk such that Mk > 2k and Mk > M j for all j ≤ k.
Next, for each j ≤ k with Sk−1[j] = 0 we simulate the machine Mφ

j on θk−1 with precision
parameter

−[log2(δj/8)] + 1

for at most k steps of execution. There are two cases:
Case 1: no machine Mφ

i terminates with an answer that is δi/4-close to r(θk−1).
In this case Ik is obtained from Ik−1 by adding Mk digits N , thus θk = θk−1 remains un-
changed. For each j such that the machine Mφ

j terminates (with a wrong answer) we set
Sk[j] = 1, for all other j’s we let Sk[j] = Sk−1[j]. The numbers δj remain unchanged.

Case 2: at least one machine Mφ
i terminates with an answer that is δi/4-close

to r(θk−1). Let j be the smallest such i. We use Lemma 5.3 to compute Ik that extends
Ik−1 and has at least Mk digits N immediately after Ik−1 so that

(7.1) δj/2 < r(θk−1)− r(θk) < δj and (5.3), (5.4) hold .

By Lemma 5.3 we can perform the perturbation in such a way that

(7.2) Φ(θk−1) < Φ(θk) < Φ(θk−1) + C · δj

for some constant C, as long as r(θk) is bounded away from 0. We then update Sk[j] to 1
and Sk[i] for i > j to 0. We also set δi = ⊥ for j < i ≤ k.

The intuition behind the last step is that once we have decreased the conformal radius by
a large value δj, all smaller drops intended to fool machines further down the line become
irrelevant.

It is evident from the construction that Sk−1 ¹ Sk, and hence the limit S = lim Sk exists.
By construction, the sequence θk converges to a computable limit θ. We need to see that
r(θ) is non-computable and that Jθ is locally connected.

We first show that Jθ is locally connected. For each j with S[j] = 1 denote by kj the
index of the last iteration when S[j] was set to 1 (recall that there can be at most 2j − 1
such iterations). Then, by the construction, kj is increasing with j and θ = limj→∞ θkj

. In
addition, by the construction, for each j, Jθkj

is an admissible 2−j perturbation of Jθkj−1
.

Hence by Theorem 6.2 the limit Jθ is locally connected.
We first note that r(θ) = lim r(θk). Indeed, it is not difficult to show (see Proposition 5.10

of [BY08b]) that

(7.3) r(θ) ≥ r = lim r(θk).
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By (7.2), the values of the Yoccoz-Brjuno function

∞ > Φ(θ) > Φ(θk)− C · (r(θk)− r), and Φ(θk) ≥ Φ(θk−1),

and hence

(7.4) Φ(θ) ≥ lim Φ(θk).

As the function

υ : θ 7→ Φ(θ) + log r(θ)

is continuous, (7.3) and (7.4) imply that r(θ) = r.

Next, we show that r(θ) is non-computable. Suppose that the machine Mφ
k computes r(θ)

for some k. There are two cases.
Case 1: S[k] = 1. This means that for some δ and `, an execution of Mφ

k on θ` with
precision δ/8 terminates in ` steps and outputs an answer that is at least δ/4 away from
the correct one. Further changes in θ` happen beyond position M` > 2` in the continued
fraction expansion, and do not affect the execution of Mφ

k with precision δ/8. In addition,
by the construction, further changes in θ` will only change the conformal radius by at most∑∞

i=1 δ/16i < δ/8. Thus Mφ
k when run on θ with precision δ/8 will terminate after ` steps

and output an answer that is at least δ/8 from r(θ). Contradiction.
Case 2: S[k] = 0. In our construction, the value of δk is changed finitely many times.

Let δ be the last value of δk that is attained after some step `1. This means that after step
`1 in our construction, no entries S[j] for j ≤ k are updated. We claim that Mφ

k does not
terminate when executed with precision parameter δ/8 on θ. Suppose for contradiction that
it does terminate in `2 steps. Let ` > max(`1, `2). Then on iteration ` of our construction

we run Mφ
k on θ`−1 for ` > `2 steps. The execution is identical to the execution of Mφ

k on θ
for ` steps, since |θ`−1− θ| < 2−`−2. Hence, by our assumption it must terminate and output
a radius value. But if this were the case, our construction would set S[k] to 1, contradicting
the assumption that S[k] is not set to 1 after step `1 < `. ¤

Let us make a final observation:

Remark 7.1. Assuming Conjecture 5.2, there is a poly-time algorithm for computing such
a parameter θ. In other words, θ can be computed with precision 2−n in time bounded by a
polynomial in n.

The modifications in the proof to make the algorithm work in polynomial time follow the
strategy outlined in §5.2.3 of [BY08b] and we will not repeat them here.

8. Computing Jθ is as hard as solving the Halting Problem

In this final section we prove that computing the Julia set Jθ constructed in the previous
section is as hard as solving the Halting Problem. By Theorem 1.1, the computability of
r(θ) is equivalent to that of Jθ. We thus proceed to formulate the following:

Theorem 8.1. Let θ be the computable parameter from Main Theorem, constructed by the
algorithm given in Section 7.

(I) There exists and oracle Turing Machine, which, given an oracle for the Halting Prob-
lem, computes r(θ).
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(II) Conversely, there exists an oracle Turing Machine, which, given an oracle for the
conformal radius r(θ), solves the Halting Problem.

Proof of part (I). By Theorem 1.2 the conformal radius r(θ) is right-computable. Since
every right-computable number is computable with an oracle for the Halting Problem, the
statement follows. ¤

Proof of part (II). For a TM M denote by T (M) the amount of time M takes to halt. If
M does not halt, then set T (M) := ∞. We will show that using an oracle for r(θ) we can
compute a function B(n) satisfying the following:

(8.1) B(n) ≥ max
M a TM with |M | ≤ n and T (M) < ∞

T (M).

In other words, B(n) is a bound on the longest finite amount of time a Turing Machine of
description length n can take before halting.

It is clear that if one can compute a function B(n) satisfying (8.1), one can also solve the
Halting Problem: on an input M with |M | = m it follows from the definition of B(m) that
M will either halt within the first B(m) steps or will never halt. Thus to decide the Halting
Problem on M it would suffice to simulate it for B(m) steps and see if it terminates until
then.

Denote by M1 the machine constructed in the previous section, which produces the pa-
rameter θ. Denote by In the initial segment of θ the machine M1 has generated n steps into
the execution. We define a machine M2 as follows. The machine M2 takes a description of
a TM M as an input. It then runs M until it terminates. If M terminates in K steps, the
machine M2 simulates M1 for K iterations to obtain a value

θK = [IK , N, N, N, . . .].

M2(M) then outputs r(θK). If M does not halt, then neither does M2(M). The description
size of the machine M2 is some constant C2, so that the total description size of M2(M) is
C2 + |M |.

At each stage of the execution of M1, we have the current value of the radius r(θk), as well
as the values of the drops δj in r(θk) that we will use to fool the machine Mj if it hasn’t been
fooled yet. Using the oracle φ for the final value of r(θ) and seeing whether r(θ) ≈ r(θ1) or
r(θ) ≈ r(θ1) − δ1 we can check whether the drop by δ1 has occurred. If it has, we will run
M1 until the drop occurs, to obtain an updated value for δ2. We will then use the oracle for
r(θ) to check whether a drop by δ2 has occurred. We can continue this process to evaluate
the function

(8.2) D(n) := the number of steps M1 takes before no more

drops by δ1, . . . , δn occur.

We claim that

B(n) := D(2n+C2+1)

satisfies (8.1). The function B(n) obviously can be computed from D(n), and hence it can
be computed from an oracle for r(θ).

Let M be a TM with |M | = n. Suppose, for contradiction, that T (M) > B(n). The
machine M2(M) can be viewed as an oracle TM M2(M)φ that ignores its oracle and outputs

18



the conformal radius

rM = r(θT (M))

on all inputs. The description size of M2(M)φ is bounded by n + C2, and hence M2(M)φ =

Mφ
L , where L < 2n+C2+1 is the index of M2(M)φ in the enumeration of all oracle TMs used

by M1.
By the definition of D(L), we have

(8.3) |r(θk)− r(θ)| < δ/4,

for all k ≥ D(L) where δ is the current value of δL at time D(L). Further, we know that the
value of δL will not change after time D(L). Equation (8.3) implies that

(8.4) |rM − r(θk)| < δ/4

for all k ≥ D(L). By the assumption we have T (M) > B(n) ≥ D(L), thus when M1 will

simulate Mφ
L , the simulation will take more than D(L) steps to complete. Hence the first

simulation of Mφ
L by M1 that will terminate will be a simulation with precision δ. By (8.4)

output of Mφ
L will be consistent with the value of r(θk) within an error of δ/4. Thus, by the

definition of M1, it will cause a drop of δ in the value of r(θk) to fool Mφ
L . This contradicts

(8.4). Hence B(n) ≥ T (M), which completes the proof. ¤
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