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Abstract

We design a Generalized Position Auction for players with private values and private bud-
get constraints. Our mechanism is a careful modification of the Generalized English Auction
of Edelman, Ostrovsky and Schwarz (2007). By enabling multiple price trajectories that ascent
concurrently we are able to retrieve all the desired properties of the Generalized English Auction,
that was not originally designed for players with budgets. In particular, the ex-post equilibrium
outcome of our auction is Pareto-efficient and envy-free. Moreover, we show that any other
position auction that satisfies these properties and does not make positive transfers must obtain
in ex-post equilibrium the same outcome of our mechanism, for every tuple of distinct types.
This uniqueness result holds even if the players’ values are fixed and known to the seller, and
only the budgets are private.

1 Introduction

Online advertisements via auction mechanisms are by now a major source of income for many In-
ternet companies. Whenever an Internet user performs a search on Google, an automatic “position
auction” is being conducted among several different potential advertisers, and Google places the
winning ads next to the search results it outputs. Google and Yahoo! generate a revenue of several
cents per each such auction, and these numbers add up to billions of dollars every year. The im-
portance of correctly designing these auctions, and of analyzing their different economic properties,
is clear.

Indeed, in this electronic setting, the interplay between theoretical models and practical imple-
mentations is rich. Many actual auction implementations were based on early theoretical insights,
and the actual auction formats that have evolved over time motivated deep theoretical studies.
Two examples are the papers of Varian (2007) and of Edelman et al. (2007), that analyze Google’s
“generalized second price” (GSP) auction, and show that it has many attractive properties. In
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particular, the GSP auction obtains in equilibrium an efficient (welfare-maximizing) allocation,
with envy-free prices. Moreover, Edelman et al. (2007) extend these results to the incomplete-
information setting via an elegant generalization of the English auction. Several other variants of
position-auctions models have been studied, see e.g. Athey and Ellison (2008) and Kuminov and
Tennenholtz (2009) and the references therein.

Many of the works on position auctions completely ignore the issue of budgets, and focus on
the bidder’s value from winning one of the slots. In sharp contrast, all actual position auctions
allow bidders to specify both a value and a budget, and the latter parameter serves an important
role in the strategic considerations of the bidders.1 In fact, budgets are a weak point of the more
general auction theory as well, with relatively few works that study the subject.2 The several
works that do study the effect of budgets indicate that, because the existence of budgets changes
the quasi-linear nature of utilities, properly inserting budgets into the model usually results in
significant modifications to the theory, both technically and conceptually. Therefore the importance
of studying position auctions with budgets is two-fold: to align theoretical auction models with
realistic auction systems, and to enrich the theoretical understanding of the effects of budgets on
auction design.

In this paper we design a position auction for players with budgets in an incomplete information
setting, where both the bidders’ values and budgets are private information. As could be expected,
we observe that previous analysis, and in particular the analysis of the generalized English auction,
fails when budget limits exist. We obtain two results: First, we design a “generalized position
auction” that retrieves all the nice properties of the generalized English auction, while taking
budgets into account. In particular, the ex-post equilibrium outcome of our auction is envy-free
and Pareto-efficient. Second, we show that any other mechanism that always obtains envy-freeness
and Pareto-efficiency in ex-post equilibrium must choose the same slot assignment and the same
payments as our mechanism, at least whenever all true types are distinct. This uniqueness result
holds even if players’ values are fixed and known, and the only private information of the players
is their budgets. This last property is especially interesting given the argument of Edelman et al.
(2007), that a complete-information assumption regarding the players’ values is reasonable. Our
uniqueness result shows that, in our context, such a relaxation will not make the problem easier.

We are not the first to describe a position auction with budgets. Such auctions were formulated
several times already, as a special case of the more general model of unit-demand players with budget
constraints. Van der Laan and Yang (2008) and Kempe, Mu’alem and Salek (2009) show that an
adaptation of the Demange-Gale-Sotomayor ascending auction finds an envy-free allocation even if
players have budget constraints. Aggarwal, Muthukrishnan, Pal and Pal (2009) additionally show
that this mechanism is incentive-compatible. Hatfield and Milgrom (2005) study a more abstract

1Actual technical rules for Google’s auction, for example, can be found at http://www.google.com/intl/en/ads/
2An up-to-date picture of the literature on auctions with budgets is given in the recent paper of Pai and Vohra

(2008).



unit-demand model for players with non-quasi-linear utilities that generalizes both the Gale-Shapley
stable-matching algorithm as well as the Demange-Gale-Sotomayor ascending auction, and provide
an incentive-compatible and (in the case of our setting) envy-free mechanism. On top of these
works, our new contributions are: (1) the uniqueness result, and (2) the new auction format that
extends the generalized English auction, rather than the matching/unit-demand format. Indeed,
our auction has a completely different structure, and it converges to the equilibrium outcome along
a different price path. Without our uniqueness result, one could easily (incorrectly) imagine that the
two proposed formats (the matching-based and the GSP-based) end-up in different outcomes. Since
the generalized English auction follows Google’s “next price” auction, our extension for players with
budgets seems of independent interest.3

To highlight the specific effect of budgets on the generalized English auction, recall the basic
setting: there are k slots and n players, and player i obtains a value of αlvi from receiving slot l,
where the constants α1 ≥ α2 ≥ · · · ≥ αk are given as an input to the mechanism (they are common
knowledge), and each player is interested in at most one slot. In the generalized English auction,
a single price gradually ascends, and players need to decide when to drop. Rename the players
such that player 1 is the last to remain, player 2 is the second to last to remain, and so on. When
the l’th player drops, she is allocated slot l for a payment that is equal to the price-point at which
the l + 1 player dropped. Thus, when l players remain, each one sees a fixed price for slot l and a
gradually increasing price for the better slots, and should decide whether to drop and take slot l,
or to remain and receive a better slot. The key observation in the analysis of Edelman et al. (2007)
is that, if each player plans to drop at the price that makes her indifferent between slot l and slot
l − 1, the winner of slot l will not regret in retrospect the fact that she did not win a better slot.
This is immediate regarding slot l − 1, but more subtle regarding the slots that are better than
l− 1, and follows from the fact that the first to drop among the remaining l players is the one with
the lowest value.

With budgets, however, this key observation fails. A player that becomes indifferent between
slot l and slot l− 1 because she has the lowest value may later be able to offer a higher price than
her competitors for the slots better than l − 1, if the competitors are limited by a low budget.
For this reason, a single price trajectory fails to reach an equilibrium. The other extreme, of
performing k completely separate auctions sequentially, will also not yield an ex-post equilibrium
since, intuitively, the competition on slot k depends on the identity of the winners of better slots, and
vice-versa. Our solution is a hybrid between these two extremes. We maintain k price trajectories,
one for each slot, that ascend in a carefully-designed concurrent way. Enabling low-valued players
with high budgets to “join the race” at the later stages is the main high-level conclusion that stems
from our technical analysis.

In addition to the straight-forward importance of an existence and uniqueness result, which
3Varian (2007) also remarks on the similarity to matching models, and argues that the GSP auction is of particular

interest because of actual Internet auctions.



illuminates some of the effects of budgets on auction design, in a more general context our analysis
contributes another layer to the currently small literature on auctions with budgets. In particular,
we wish to point out two conceptual aspects of the positive result: First, it is “detail-free” and
“robust” (Wilson, 1987; Bergemann and Morris, 2005), while most previous works on auctions
with budgets assume a Bayesian setting that is not robust, and sometimes not even detail-free.
Second, it should be contrasted with the recent interesting impossibility of Dobzinski, Lavi and
Nisan (2008). They show that there does not exist a dominant-strategy incentive-compatible and
Pareto-efficient multi-item auction, even in the very restrictive setting of two identical items and
two players with additive private valuations (and a private budget constraint). The existence result
for position auctions demonstrates the importance of their assumption that players wish to receive
multiple items. With unit-demand, a possibility (though unique) still exists, as demonstrated here.

The remainder of this paper is organized as follows. In section 2 we setup the formal model and
explain our different technical assumptions. In section 3 we describe why the generalized English
auction fails when players have budgets, and detail our modified format. Section 4 provides the
analysis, with some technical details postponed to Appendix B.

2 Preliminaries

Basic model of position auctions. In a position auction there is a set K = {1, ..., k} of items
(“slots”) and a set N = {1, ..., n} of bidders, where each bidder is interested in receiving one of the
slots. Each slot l ∈ K is characterized by a known constant αl > 0, where α1 ≥ α2 ≥ · · · ≥ αk,
which is an input to the mechanism. Each bidder i obtains a monetary value of αlvi from receiving
slot l, where vi is a parameter that is privately known only to player i. We assume without loss of
generality that k ≤ n, since otherwise we can just ignore the k − n lowest slots.

This model has been studied in recent years (see e.g. Varian (2007) and Edelman et al. (2007)) in
order to analyze the ad auctions that are conducted by search engines like e.g. Yahoo! and Google.
In a nut-shell, search engines place paid online advertisements in proximity to search results that
they output. Advertisers bid for the online placement of their advertisements, and the k winning
bidders are positioned on the web-page according to their bids. The value vi represents bidder i’s
expected profit given that the Internet user will click on her ad, and the constant αl (the “click-
through rate”) represents the probability that the Internet user will indeed click on the ad, given
that the ad is positioned at slot l. Slot 1 is the “best” position, i.e. has the highest click-through
rate, slot 2 is the second-best, and so on and so forth.4

Budget constraints and valid outcomes. Previous works on Google’s next-price auction have
4We follow the exact model of Varian (2007) and of Edelman et al. (2007), in which the click-through rate depends

only on the position of the slot, and not on other factors like the quality of the different ads. Few recent works
have begun to study more complex click-through-rate models, see for example the work of Kuminov and Tennenholtz
(2009) and the references therein.



assumed quasi-linear utilities, i.e. bidder i’s utility from receiving slot l and paying Pi is equal to
αlvi −Pi. In this paper we analyze the effect of adding a hard budget limit that caps the maximal
payment ability of a player. More precisely, each player i has a privately-known budget bi, and
cannot pay any price P ≥ bi. Thus the resulting utility of a player with type (vi, bi) that receives
slot l and pays P is

u((vi, bi), l, P ) =

 αl · vi − P P < bi

0 P ≥ bi

where the zero-utility for the case that P ≥ bi captures the fact that if a player has to pay such
P , she will default and will not complete the transaction. (our results continue to hold if this zero
utility is replaced with any other negative utility). Note that the feasibility regime is any P < bi.
This is more convenient for us than a weak inequality due to some technical reasons that will be
explained below.5

To summarize, we define a valid outcome of a position auction as a tuple (si, pi)i∈N , where every
bidder i receives the slot si ∈ K ∪ {k + 1} (k + 1 is a dummy slot with αk+1 = 0) and pays pi. A
valid outcome must additionally satisfy:

1. (feasibility) si, sj ∈ K, i 6= j, implies si 6= sj .6

2. (budget limit) pi < bi.

3. (ex-post Individual Rationality (IR)) pi ≤ αsivi.

It should be noted that valid outcomes are deterministic. Interpreting budget constraints in a
randomized context is a more subtle task that we defer to future work.

Desired solution properties. Since there are many possible valid outcomes, one may wish to
focus attention on those outcomes that are “efficient” and “fair”, as captured by the following two
classic properties:

1. (Pareto-efficiency) A valid outcome o = (si, pi)i∈N is Pareto efficient if there is no other valid
outcome o′ = (s′i, p

′
i)i∈N such that αs′i

vi − p′i ≥ αsivi − pi (players weakly prefer o′ to o) and∑
i∈N p′i ≥

∑
i∈N pi (the seller weakly prefers o′ to o), with at least one strict inequality.

2. (Envy-freeness) A valid outcome (si, pi)i∈N is envy-free if for every two distinct players i, j ∈
N such that pj < bi, αsivi − pi ≥ αsjvi − pj .7

5When budgets are real numbers then either the set of all infeasible payments includes its infimum or the set of
all feasible payments includes its supremum, and this choice does not seem to have any conceptual meaning.

6Note that many players can be assigned to the dummy slot k + 1, meaning that they do not receive any slot.
7One may also consider to weaken the definition of envy-freeness to a stability condition, such that for each pair of

players, at least one of them would not like to exchange slots and prices with the other. This turns out to be weaker
than Pareto-efficiency: one can show that any Pareto-efficient outcome satisfies this stability condition, but there
may be stable outcomes that are not Pareto-efficient. We additionally note that envy-freeness in position auctions is
related to stable matchings in a two-sided graph, as discussed by Edelman et al. (2007).



The generalized English auction of Edelman et al. (2007) is envy-free, and we will show that this
strong fairness property can still be achieved even when budgets are considered. Pareto-efficiency
is strictly weaker than envy-freeness:

Proposition 1. Every envy-free outcome in which all slots are allocated is Pareto-efficient.

Proof. Assume by contradiction that o = (si, pi)i∈N is envy-free but not Pareto-efficient, and let
o′ = (s′i, p

′
i)i∈N be a valid outcome that Pareto improves o. Without loss of generality

∑
i∈N p′i >∑

i∈N pi, since if it is an equality then there exists a player i with a strict inequality s′ivi − p′i >
sivi − pi and we can slightly increase p′i to get a Pareto improving outcome in which the seller’s
payoff is strictly larger than her payoff in o.

For any slot l, let ql, q′l be the payment of the player who receives slot l is o, o′ respectively.
Let j be some slot such that q′j > qj , and suppose player ij received slot j in o′. Since player ij ’s
utility in o′ is not smaller than her utility in o it follows that ij received a different slot in o, say
sij = l 6= j. We get αlvij − ql ≤ αjvij − q′j < αjvij − qj . Thus player ij envies the player who got
slot j in o, contradicting the fact that o is envy-free.

The opposite statement is not true; there exist valid outcomes that are Pareto-efficient but not
envy-free. For example, the outcome that maximizes the social welfare (sum of players’ values for
the slots they receive) and charges no payments is Pareto-efficient, but is not envy-free.

Since the type (vi, bi) of player i is private information, known only to the player herself, we study
the design of mechanisms that output (in equilibrium) a valid outcome which is Pareto-efficient and
envy-free. We focus on so called “detail-free” solutions concepts, and use the equilibrium notions of
ex-post Nash, and dominant strategies.8 We refer to a direct mechanism that is incentive compatible
in dominant strategies as “truthful”.

Assuming distinct budgets. It turns out that, in some subtle sense, it is impossible to construct
truthful and Pareto-efficient auctions, even for a single item. It is long known (Che and Gale (1998);
see also Krishna (2002)) that the following single-item mechanism is truthful when true budgets
are distinct: the winner is the player i with the maximal “bid” min(bi, vi), and she pays the second
largest bid. One can verify that the dominant-strategy of a player is to declare their true value and
budget, and that the outcome is Pareto-efficient and envy-free. Moreover, Dobzinski et al. (2008)
show (in a more general context) that this mechanism is the unique truthful and Pareto-efficient
mechanism, at least when all budgets are distinct.

To demonstrate9 that the assumption of distinct budgets is crucial, suppose two players with
budgets b1 = b2 = 1 and values v1 = v2 = 3. The min(v, b) mechanism chooses w.l.o.g. player 1
as the winner, and she pays a price of 1, for a resulting utility v1 − P1 = 2. If player 2 is able to

8Our direct mechanism exhibits an ex-post equilibrium, and not dominant strategies, as explained below.
9Similar examples were described by Van der Laan and Yang (2008) and by Aggarwal et al. (2009).



pay exactly her budget that she can gain from declaring a false budget b′ > b2: she becomes the
winner, and pays a price of 1, for a resulting utility v2 − P2 = 2 > 0. If a player is not able to pay
her exact budget parameter bi, but only any strictly lower payment, then the outcome is infeasible
and player 1 will prefer to lose and pay 0 over paying the infeasible price of 1. Either way, this
mechanism is not truthful when budgets are identical.

We explicitly spell out the assumption of distinct budgets, which was implicit in some of the
previous works (most probably since the event of having non-distinct budgets has zero probability).
This assumption leads to the technical requirement that players can only pay any price which is
strictly less than their budgets. In the zero-probability event that there exist two players with equal
budgets, the auction may be canceled in order to avoid infeasible outcomes.

Alternatively, one can assume a discrete type space (in other words, assuming that all param-
eters are integers). With discrete types, the mechanism can avoid the infeasibility of the outcome
when budgets are identical by artificially increasing the budget of each player i by an arbitrarily
small εi < 1 with εi 6= εj for any two players i, j. This pre-processing step will make the mecha-
nism truthful and Pareto-efficient even if budgets are identical (envy-freeness will still be violated
with identical budgets, though). One can verify that all our results continue to hold under these
modifications; we do not repeat all proofs for the discrete setting to keep the exposition concise.

3 The Generalized Position Auction

3.1 The effect of budgets on the Generalized English Auction

It is constructive to start with a short discussion on the generalized English auction of Edelman
et al. (2007). This auction gradually increases a price parameter Q, and players decide whether to
drop or stay. Rename the players according to the reverse order at which they dropped (player 1
never dropped, player 2 dropped last, etc.). When player l ≤ k drops she wins slot l and pays the
price at which player l + 1 dropped. This continuous-time description is made discrete and formal
by the following definition:

Definition 1 (The Generalized English Auction (Edelman et al., 2007)). Initialize Q = 0 (current
price), l = min(k + 1, n) (current slot), and Nl = N (active set of bidders). Then perform:

1. Each player i ∈ Nl declares a bid pl
i (this is the price at which player i plans to drop).

2. The l’th highest bidder wins slot l and pays Q (recall that slot k + 1 is a dummy slot with
αk+1 = 0).

3. If l = 1 then terminate. Otherwise raise Q to be the l’th bid, define Nl−1 to be the l − 1
highest bidders, decrease l by one, and repeat from step 1.



Informally, when the price increases and l ≤ k active bidders remain, each bidder i faces two
alternatives: to drop and win slot l for a price that is already fixed and known (this is the price at
which the (l+ 1)’th bidder dropped), or to stay in the auction. This decision represents a trade-off
between winning slot l or winning one of the better slots 1, ...l−1 (for a higher price). In the formal
definition the price does not increase continuously but the same tradeoff has to be made when the
player chooses her new bid at step 1. The equilibrium strategies are derived by looking closely at
this tradeoff. Assuming infinite budgets, the price P at which player i becomes indifferent between
winning slot l for a price Q and winning slot l−1 for a price P should satisfy αlvi−Q = αl−1vi−P ,
or alternatively P = (αl−1−αl)vi +Q. If the player bids this P in step 1 and ends up winning slot
l, she is guaranteed not to regret the fact that she did not win slot l− 1. The twist in the analysis
of Edelman et al. (2007) is to show that this bidding strategy ensures that the player will not regret
winning any better slot, not just slot l− 1. In other words, this bidding strategy forms an ex-post
Nash equilibrium. A simple way to observe that these strategies are indeed an ex-post equilibrium
is to note that they lead to the VCG outcome, which is well-known to be incentive compatible.

With budgets, however, the picture changes and this auction no longer admits an ex-post
equilibrium. The main difficulty arises from the fact that a player that prefers slot l over slot l− 1
may still prefer slots that are better than l−1. To demonstrate this, consider the following example,
with three players and two slots, and parameters α1 = 1.1, α2 = 1, v1 = 20, b1 = 7.5, v2 = 10, b2 =
7.6, v3 = 7, b3 = 100. With the generalized English auction, when the price reaches 7, player 3 faces
a dilemma: if she will not drop, she might end up winning slot 2 for a price higher than her value
for that slot (if players 1 and 2 will have infinite budgets, a piece of information she does have at
the time of the decision). If she drops, she will realize in retrospect that she could have won slot 1
for a profitable price of 7.6 (while her value for slot 1 is 7.7), since players 1 and 2 turn out to be
limited by their budgets, and hence cannot continue to compete with player 3 on slot 1 after the
price reaches 7.6. Thus, the introduction of budgets enables the possibility that players who drop
when the current slot is l might want to join again for some slot l′ < l. Of-course, simply allowing
players to re-join will cause more problems, since this implies changing the entire price hierarchy
that was formed.

3.2 The Generalized Position Auction

In order to solve these difficulties, the Generalized Position Auction uses k price trajectories, one
for each slot, that ascend concurrently as follows. Players first compete for the k’th slot, and each
player decides when to suspend her participation in this slot’s auction. The price ascent temporarily
stops when exactly k players remain active. Let this price point be Q1

k. The price ascent for slot
k − 1 starts from Q1

k, all players (even those that suspended participation at the previous slot)
may participate in the auction for slot k − 1. Players again decide when to temporarily suspend
participation, and when exactly k−1 players remain active the price ascent temporarily stops, and



we move to slot k− 2. This continues in a similar manner until we reach slot 1. In slot 1, the price
ascent stops when exactly one player remains active. This player wins slot 1 and pays the last price
that was reached (as in the English auction). At this point the auction of slot k resumes. There
are now k − 1 slots left, and so the auction continues until there remain k − 1 active players, at
this point the price ascent stops again, and the auction for slot k− 1 resumes. This continues until
the winner of slot 2 is determined. The auction of slot k is once again resumed, and this process
continues in a similar manner until all slots are sold. As before, one is able to describe this process
more formally via the following discrete-time mechanism.

Definition 2 (The Generalized Position Auction (indirect version)). Initialize t = 1 (first round),
l = k (current slot is k), and Nt = N (set of active players). Then perform:

1. Each player i ∈ Nt declares a bid pt
i,l. (this is the price at which player i will suspend

participation at the auction for slot l at the current iteration t).

2. Let Qt
l be the (l+1)−(t−1) highest bid. (this is the price of slot l at round t – the point where

the price ascent stops since the number of active players is equal to the number of remaining
slots).

3. If l > t then decrease l by 1 and repeat from step 1. Otherwise l = t and,

• The player i with the highest bid pt
i,t wins slot t and pays Pt = Qt

t. (section 3.3 below
describes the allowable tie-breaking rules).

• If t = k then terminate. Otherwise increase t by one, update Nt by removing the new
winner, set l = k, and repeat from step 1.

Suppose that player i had a bid pt
i,l+1 > Qt

l+1 for slot l+ 1 (t < l+ 1 ≤ k), and is now required
to choose her bid pt

i,l for slot l. If she were to assume that the alternative for her is to win slot
l+ 1 for a price Qt

l+1 then her maximal willingness to pay for slot l, as explained in subsection 3.1,
is P = (αl − αl+1)vi + Qt

l+1. Since she cannot exceed her budget bi, this myopic reasoning will
therefore direct her to bid min(bi, (αl − αl+1)vi + Qt

l+1). If player i had a bid pt
i,l+1 ≤ Qt

l+1 for
slot l + 1 she could simply increase her willingness to pay for slot l by the added value of slot l
(compared to slot l + 1), i.e. by (αl − αl+1)vi. This leads us to define:

Definition 3 (Myopic bidding in the Generalized Position Auction). The “myopic bidding strategy”
is defined by:

pt
i,l =

 min(bi, (αl − αl+1)vi + min(Qt
l+1, p

t
i,l+1)) l < k

min(bi, αkvi) l = k

for any round t and any slot l ≥ t.



Consider again the example given in section 3.1, with three players and two slots, and parameters
α1 = 1.1, α2 = 1, v1 = 20, b1 = 7.5, v2 = 10, b2 = 7.6, v3 = 7, b3 = 100. In the Generalized Position
Auction, when players are bidding myopically, the bids are as follows. In the first round, the
slot-2-bids are p1

1,2 = 7.5, p1
2,2 = 7.6, p1

3,2 = 7. Therefore we get a cutoff price Q1
2 = 7, and the

slot-1-bids are p1
1,1 = 7.5, p1

2,1 = 7.6, p1
3,1 = 7.7. Hence player 3 wins slot 1 and pays 7.6. Players

1 and 2 continue to the second round, and the slot-2-bids remain as before p2
1,2 = 7.5, p2

2,2 = 7.6.
Thus player 2 wins slot 2 and pays 7.5. One can easily verify that this is a valid outcome that is
Pareto-efficient and envy-free. (recall that a player can pay only strictly less than her budget).

However, myopic bidding is not an ex-post equilibrium. For example, consider again the example
from the previous paragraph. If players 1 and 2 bid myopically then player 3 can decrease her price
for slot 1 by bidding p1

3,2 = 0 and p1
3,1 = 7.7. The cutoff price for slot 2 will then be zero, and

because of that the bids of players 1 and 2 for slot 1 will decrease to be 2 and 1, respectively. This
problem is solved by forcing consistency. We first describe a direct version of the above auction
for the purpose of the analysis, and then explain how consistency verification solves the problem
of the indirect auction.

Definition 4 (The Generalized Position Auction (direct version)).

1. Each player i reports a type (vi, bi). If two players report the same budget then the auction is
canceled (slots are not allocated and no price is charged).

2. We simulate the indirect version of the Generalized Position Auction where each player i

follows myopic bidding according to her declared type (vi, bi).

The main results of this paper are summarized by the following theorem:

Theorem 1. Assuming that all true budgets are distinct,

1. (ex-post equilibrium) For every player i, if all other players are truthful then it is a best
response for player i to be truthful as well.

2. (desired properties hold) If all players are truthful then the Generalized Position Auction
results in a valid outcome which is Pareto-efficient and envy-free.

3. (uniqueness) Fix any other mechanism that always results (in ex-post equilibrium) in a valid
outcome which is Pareto-efficient and envy-free, and that never makes positive transfers.
Then this mechanism must output the same outcome (slot assignments and payments) as our
Generalized Position Auction for any tuple of types with distinct values and distinct budgets.

We note that the third result also implies that truthfulness is the unique ex-post equilibrium of the
Generalized Position Auction. It is also interesting to note that when all budgets are sufficiently
large the outcome of our auction is the same as the outcome of the generalized English auction,



which in turn is equivalent to the outcome of VCG. Our theorem does not obey the usual rule
of thumb that direct mechanisms exhibit dominant strategies, and the solution concept of ex-
post equilibrium is used for indirect mechanisms. This is not the case here, although the above
mechanism is direct, because of our modeling of the budget constraint. Declaring the true budget
is not a dominant strategy for player i since if another player j misreports and declares bi instead of
bj , the auction will be canceled if player i reports truthfully. As remarked in section 2, this artifact
of our definitions can be avoided if we assume a discrete type space. In that case the auction will
never be canceled, and truthfulness will become a dominant-strategy of the direct mechanism.

Returning to the indirect mechanism, one can make myopic bidding an ex-post equilibrium by
forcing consistency10, i.e. by verifying that the bidding behavior of each bidder is consistent with
myopic bidding according to some possible type. Since myopic bidding is straight-forward, this
could be easily done “on the fly”, as the auction progress. An inconsistent bidder is disqualified.
Such a consistency check maintains the advantages of indirect auctions, mainly that the winner of
the highest slot does not reveal her type, and other bidders implicitly reveal their types only when
competition forces them to do so. A standard result shows:

Corollary 3.2.1. Myopic bidding according to one’s true type is an ex-post equilibrium of the
generalized position auction (indirect version with consistency check).

Proof. Fix a player i and suppose all other players are bidding myopically according to their true
types t−i. Let ui be i’s resulting utility from bidding myopically according to her true type. Assume
by contradiction that there exists a different strategy that results in utility ũi > ui. That strategy
must be consistent with some type t̃i since otherwise the player is disqualified, with utility zero,
and since the mechanism is individually rational we have ui ≥ 0. But when i is consistent the result
of the indirect auction is identical to the result of the direct auction with declaration (t̃i, t−i), and
since the direct auction is truthful we have ũi ≤ ui, a contradiction.

It is interesting to note that, while indeed most of the auctions being conducted in real settings
are indirect, the electronic position auctions of Google and Yahoo! are actually direct mechanisms,
where the advertisers are required to simply bid a value and a budget.

3.3 Tie-breaking

The issue of tie-breaking requires some attention. In general, when there are several highest bids
in step 3 of the generalized position auction, either all highest bidders have the same value, or at
most one of them has a higher value, but her bid is cut at her budget. For example, suppose one
item and two players that declare (v1, b1) = (7, 10) and (v2, b2) = (8, 7). Then at price 7 there will
be a tie. Since player 2 cannot pay her budget, we must choose player 1 as the winner.

10It is not clear whether the indirect mechanism of Aggarwal et al. (2009) requires a similar consistency check, as
it is described only in its direct version. The mechanism of Hatfield and Milgrom (2005) is also direct.



More formally, we prove the following intuitive property: if player i has larger value than player
j, but her bid at some slot is smaller than j’s bid, then it must be the case that i’s bid was cut at
her budget. This property will be extensively used throughout the analysis.

Claim 3.3.1. Fix any round t, slot l, and i, j ∈ Nt. If vi ≥ vj and pt
i,l ≤ pt

j,l, with at least one
strict inequality, then pt

i,l = bi.

Proof. We prove the claim by induction. For slot k the proof is immediate from the definition.
Therefore we assume correctness for slot l + 1 and prove for slot l. Assume by contradiction that
pt

i,l 6= bi. If pt
i,l+1 ≥ Qt

l+1 then pt
i,l = (αl−αl+1)vi +Qt

l+1) ≥ (αl−αl+1)vj +Qt
l+1) ≥ pt

j,l, which is a
contradiction since by assumption either vi > vj or pt

i,l < pt
j,l. Otherwise pt

i,l+1 < Qt
l+1. If pt

i,l+1 = bi

we get a contradiction since bi ≥ pt
i,l ≥ pt

i,l+1 = bi. Therefore by the induction assumption we must
have pt

j,l+1 ≤ pt
i,l+1, and this inequality is strict if vi = vj . Thus pt

i,l = pt
i,l+1 + (αl − αl+1)vi >

pt
j,l+1 + (αl − αl+1)vj ≥ pt

j,l, a contradiction.

Corollary 3.3.1. Fix any round t, slot l, and i, j ∈ Nt. If pt
i,l = pt

j,l then either pt
i,l = bi, or

pt
j,l = bj, or vi = vj.

Thus, if there exist two or more highest bidders in step 3 of the generalized position auction, we
choose the winner to be some highest bidder i such that bi 6= Qt

t. Note that there exists at most
one highest bidder with bi = Qt

t since budgets are distinct. The tie-breaking among all players with
equal value may be arbitrary, but consistent throughout the auction. We denote the tie-breaking
order over the players by �, i.e. for two players i, j, i � j implies that in case of a tie i will be
chosen. This tie-breaking rule ensures that a player will always pay strictly less than her budget,
and thus the outcome is ex-post individually rational.

4 Analysis

We use few additional terms and notations throughout the analysis: Bt
j denotes the set of j− t+ 1

highest bidders at slot j and iteration t. Ties for inclusion in Bt
j are settled the same way as

described above, and in particular for any i ∈ Bt
j we have Qt

j < bi. A player i ∈ Bt
l is “strong” at

slot l and iteration t, otherwise the player is “weak”. We call Pt the “price of slot t”. We say that
slot l is better than slot l̃ if l < l̃ (and slot l̃ is worse than slot l). We sometimes use

qt
i,l = min(pt

i,l, Q
t
l).

This gives pt
i,l = min(bi, qt

i,l+1 + (αl −αl+1)vi) for every player, slot, and round, which will simplify
notation. Note that pt

i,l ≥ pt
j,l implies qt

i,l ≥ qt
j,l.

One important observation that follows in a straight-forward way from the definition of the
mechanism is that the outcome of round t depends only on the set of remaining players Nt, because



the bids pt
i,k are fixed and identical in all rounds t. Thus a new round is simply a recursive call to

the same auction, with a new set of players and a new set of slots.
Several monotonicity properties of the bids, for any round t, any player i ∈ Nt, and any slot l,

will turn out useful:

1. Qt
l ≥ Qt

l+1: we have pt
i,l ≥ qt

i,l+1, and for every i ∈ Bt
l+1 we have qt

i,l+1 = Qt
l+1. Thus for at

least |Bt
l+1| players i we have pt

i,l ≥ Qt
l+1. Since Qt

l is the |Bt
l+1| − 1 highest bid for slot l in

round t the claim follows.

2. qt
i,l ≥ qt

i,l+1: we have pt
i,l ≥ qt

i,l+1, thus if pt
i,l = qt

i,l we are done, and otherwise qt
i,l = Qt

l ≥
Qt

l+1 ≥ qt
i,l+1.

3. pt+1
i,l ≥ pt

i,l and therefore also qt+1
i,l ≥ qt

i,l. This follows by induction on slot l = k, ..., 1. For
slot k the claim is by definition, this now implies the claim for slot k − 1, and so on. This
fact also implies that Qt+1

l ≥ Qt
l .

4. If i /∈ B1
l and pt

i,l = qt
i,l = bi, then player i will not win any slot s ≤ l. (this follows from the

previous two properties).

4.1 Envy-Freeness

The first property we prove is envy-freeness. For notational simplicity, throughout the subsection
we rename the players such that player i wins slot i, for i = 1, ..., k, and every player i > k does
not win any slot.

We prove envy-freeness in steps, building intuition by using the case of two slots to demonstrate
key ideas.

Two slots: player 1 does not envy player 2. We start by showing that, with two slots,
player 1 (who wins the highest slot, slot 1) does not envy player 2 (who wins the lower slot). We
have min(b1, (α1 − α2)v1 + q11,2) = p1

1,1 ≥ P1, and P1 < b1 by the tie-breaking rule. This implies
(α1 − α2)v1 + q11,2) ≥ P1. Rearranging, we get α1v1 − P1 ≥ α2v1 − q11,2 ≥ α2v1 − P2, where the
second inequality follows since q11,2 ≤ Q1

2 ≤ Q2
2 = P2.

The general case: player s does not envy player l > s. With more than two slots, we
need a very similar argument to show that player some player s does not envy a player l > s (that
received a slot worse than s). The only complication is the fact that the two slots s, l might not be
adjacent as before, and a simple inductive argument is being used to overcome the difficulty.

Claim 4.1.1. Fix any player i and any two slots l, s with s < l ≤ k + 1. Then min(bi, qt
i,l + (αs −

αl)vi) ≥ pt
i,s ≥ qt

i,s (where we define qt
i,k+1 = αk+1 = 0). Furthermore, if i /∈ Bt

j for any s ≤ j < l

then the two inequalities become equalities.



Proof. We prove by induction on s = k, ..., 1. For s = k the claim is by definition. Now fix s < k

and assume correctness for s + 1 and any l′ > s + 1. We need to show correctness for s and any
l > s. We have by definition qt

i,s ≤ pt
i,s = min(bi, (αs − αs+1)vi + qt

i,s+1). If l = s+ 1 we are done.
Otherwise l > s+ 1 and we have by induction qt

i,s+1) ≤ min(bi, qt
i,l + (αs+1−αl)vi). Combining the

two equations, the first part of the claim follows. If i /∈ Bt
j for any s ≤ j < l then the first inequality

is equality by definition, and the second inequality is equality by the induction assumption. Thus
the second part of the claim follows as well.

Now, exactly as in the two-slots case, from the above claim we get min(bs, (αs − αl)vs + qs
s,l) ≥

qs
s,s ≥ Ps, and Ps < bs by the tie-breaking rule. This implies (αs−αl)vs+qs

s,l) ≥ Ps. Rearranging, we
get αsvs−Ps ≥ αlvs−qs

s,l ≥ αlvs−Pl, where the second inequality follows since qs
s,l ≤ Qs

l ≤ Ql
l = Pl.

Therefore we have shown that a player does not envy any other player that receives a worse
slot. We now continue to show the other direction, that a player does not envy any other player
that receives a better slot, which is a bit more complicated. As above, we start with the case of
two slots.

Two slots: player 2 does not envy player 1. If we had q12,2 = q22,2 then we could use
an argument similar to above to show that player 2 does not envy player 1: P1 = Q1

1 ≥ p1
2,1 =

min(b2, (α1 − α2)v2 + q12,2). Thus, if P1 < b2 (and assuming q12,2 = q22,2 = Q2
2 = P2) then P1 ≥

(α1−α2)v2 + q12,2 = (α1−α2)v2 +P2, which, by rearranging, gives us α2v2−P2 ≥ α1v2−P1 as we
need.

However it may well be that q12,2 < q22,2, as is the case in the running example of section 3,
where player 2 wins slot 2, and q22,2 = Q2

2 = 7.5 > 7 = Q1
2 ≥ q12,1. Also notice that in this example

P1 = b2 and therefore player 2 does not envy the winner of the first slot (who is player 3 in the
example). It turns out that this is in fact what happens in general: either q12,2 = q22,2, or P1 ≥ b2.
More specifically, If q11,2 ≥ q12,2 (where player 1 is assumed to be the winner of slot 1) then the
former case is true, as claim 4.1.2 below shows, and if q11,2 < q12,2 then the latter case is true, as
claim 4.1.3 shows. We phrase and prove the claims in general terms, as they will turn out useful
in the sequel as well.

Claim 4.1.2. Let player i be the winner of slot t, and fix some slot l > t and some player j ∈ Nt+1

such that pt
j,l ≤ pt

i,l (and therefore also qt
j,l ≤ qt

i,l). Then pt
j,l = pt+1

j,l and qt
j,l = qt+1

j,l .

Proof. We first prove pt
j,l = pt+1

j,l by induction on the slots. For l = k the proof is immediate since
pt

j,k = pt+1
j,k for any player j. We assume correctness for slot l + 1 and prove for l. If i ∈ Bt

l+1 then
by induction pt

j,l+1 = pt+1
j,l+1 for any player j /∈ Bt

l+1, which implies Bt+1
l+1 = Bt

l+1 \ {i}, hence also
Qt+1

l+1 = Qt
l+1. This implies pt

j,l = pt+1
j,l for all players in Nt+1. Otherwise assume that i /∈ Bt

l+1.
This implies pt

j,l = min(bj , (αl−αl+1)vj +pt
j,l+1). If pt

j,l+1 ≤ pt
i,l+1 then by induction pt

j,l+1 = pt+1
j,l+1,

hence pt
j,l = min(bi, (αl − αl+1)vj + pt

j,l+1) = min(bi, (αl − αl+1)vj + pt+1
j,l+1) ≥ pt+1

j,l ≥ pt
j,l, and the

claim follows. Otherwise suppose pt
j,l+1 > pt

i,l+1. This implies vi < vj : if vi ≥ vj , claim 3.3.1 implies



that pt
i,l+1 = bi, which implies that player i cannot win slot t, a contradiction. Thus vi < vj , and

claim 3.3.1 implies pt
j,l = bj (by reversing the roles of i, j in claim 3.3.1, since we now have vi < vj

and pt
j,l ≤ pt

i,l). Thus pt
j,l = bj ≥ pt+1

j,l ≥ p
t
j,l, implying the first part of the claim.

We now prove that qt
j,l = qt+1

j,l . If pt
i,l ≥ Qt

l then the above paragraph implies Qt+1
l = Qt

l

and hence qt
j,l = qt+1

j,l . If pt
i,l < Qt

l then pt
j,l = qt

j,l and pt
i,l = qt

i,l. The above paragraph implies
qt
j,l = pt

j,l = pt+1
j,l ≥ q

t+1
j,l ≥ q

t
j,l, and the claim follows.

In words, the claim states that, if player i wins slot t in round t, then every player j that bids
lower than i in some slot l > t in round t (i.e. pt

j,l ≤ pt
i,l) will have the same bid pt

j,l = pt+1
j,l for

slot l in the next iteration t + 1. As an immediate implication we get that, if the winner i of slot
t is strong in slot l > t and round t then pt

j,l = pt+1
j,l for any player j ∈ Nt+1, and therefore also

Qt
l = Qt+1

l . Alternatively put, if pt
i,l ≥ Qt

l then Qt
l = Qt+1

l .
In particular, for the two-slots case, If q11,2 ≥ q12,2 then q12,2 = q22,2 and player 2 does not envy

player 1. To complete the argument we need to show that if q11,2 < q12,2 then P1 ≥ b2. Towards this,
we first show:

Claim 4.1.3. Fix any player s > 1 such that q1s,1 < bs. Then for any slot l, q11,l ≥ q1s,l, and if
s ∈ B1

l then 1 ∈ B1
l .

Proof. We first show that if p1
1,l < p1

s,l then 1 ∈ B1
l . Otherwise it must follow that p1

1,l = q11,l 6= b1,
and claim 3.3.1 implies v1 < vs. Since p1

1,1 ≥ p1
s,1 it follows that p1

s,1 = bs, a contradiction. This
implies q11,l ≥ q1s,l. This also implies that if s ∈ B1

l but 1 /∈ B1
l then p1

1,l = p1
s,l = Q1

l . Since p1
1,l 6= b1

(as player 1 wins slot 1) and p1
s,l 6= bs (as q1s,l = q1s,1 < bs) then v1 = vs, and by corollary 3.3.1

also p1
1,1 = p1

s,1. But this contradicts the consistency of the tie-breaking rule, since in slot l the
tie-breaking preferred player 1 over player s and in slot 1 the tie-breaking preferred player s over
player 1.

This completes the case of two slots: if q11,2 < q12,2 then q12,1 = b2 (since by claim 4.1.3, q12,1 < b2

implies q11,2 ≥ q12,2). Since q11,1 ≥ q12,1 then P1 = Q1
1 ≥ q12,1 = b2, and the two-slots case follows.

The general case: player s does not envy player l < s. The proof for the two-slots case
relied on the claim that if qs

s,1 < b2 then qs
s,s = q1s,s, taking s = 2. The general argument relies on

the same claim, and to prove it we first need two claims:

Claim 4.1.4. Fix any player s > 1 such that q1s,1 < bs, and any slot l < s. If s ∈ B1
l then l′ ∈ B1

l

for any l′ ≤ l.

Proof. We prove by induction on the number of slots k. For k = 1 the claim is empty. Assume
correctness for any k′ < k slots and let us prove for k. We have 1 ∈ B1

l by claim 4.1.3. Therefore
B2

l = B1
l \ {1}. Claim 4.1.3 also implies q11,2 ≥ q1s,2 which by using claim 4.1.2 implies q2s,2 = q1s,2 ≤

q1s,1 < bs. Since s ∈ B2
l the induction assumption implies l′ ∈ B2

l for any 1 < l′ ≤ l, and the claim
follows.



Claim 4.1.5. Fix any player s > 1 such that q1s,1 < bs. Then B1
s = {1, ..., s}, and s /∈ B1

l for any
l < s. This gives two corollaries:

1. If s > k then player s is always weak.

2. Ps = Q1
s = q1s,s.

Proof. If s ∈ B1
l for some l < s then by claim 4.1.4 we have that {1, ..., l, s} ⊆ B1

l which contradicts
the fact that |B1

l | = l. If s /∈ B1
s then by combining claims 4.1.3 and 4.1.2 we have p1

s,s = p2
s,s =

· · · = ps
s,s, which implies that s /∈ Bs

s , a contradiction. Thus using claim 4.1.4 again we have
B1

s = {1, ..., s}. The first corollary is immediate from the claim, and the second corollary follows
by claim 4.1.2.

By using this last claim we could prove envy-freeness in the same way that was used for the
two-slots case. However for the sequel we wish to extract one additional interesting property of the
resulting prices.

Claim 4.1.6. For any slot l = 1, ..., k, Pl = maxs>l min(bs, (αl − αs)vs + Ps), where we define
αs = 0 and Ps = 0 for any player s > k.

Proof. It is enough to prove the claim only for l = 1, since the price Pl for l > 1 is determined by
a recursive auction for l slots and a set of players Nl, and in that auction slot l is the first slot.
We will show that, for any player s > 1, q1s,1 = min(bs, (α1 − αs)vs + Ps). Since P1 = maxs>1 q

1
s,1,

the claim will then immediately follow. If q1s,1 = bs then by claim 4.1.1 we have bs = q1s,1 ≤
p1

s,1 ≤ min(bs, q1s,s + (α1 − αs)vs) ≤ min(bs, (αl − αs)vs + Ps) ≤ bs, implying the claim. Otherwise
q1s,1 < bs and by claim 4.1.5 we have that s /∈ B1

l for any l < s. By claims 4.1.1 and 4.1.5 we get
q1s,1 = min(bs, q1s,s + (α1 − αs)vs) = min(bs, Ps + (α1 − αs)vs).

Lemma 1. The outcome of the Generalized Position Auction (direct version) with truthful bidding
is envy-free. Furthermore, if s < l and ps

s,s > Ps then one direction of envy-freeness holds with a
strict inequality: αsvs − Ps > αlvs − Pl.

Proof. Consider any two players s, l. We will show that s does not envy l. If s < l then the only
non-trivial possibility is l ≤ k. In this case (αs −αl)vs +Qs

l ≥ (αs −αl)vs + qs
s,l ≥ ps

s,s ≥ Ps, where
the second inequality follows by claim 4.1.1. This implies αsvs−Ps ≥ αlvs−Qs

l ≥ αlvs−Pl, and if
ps

s,s > Ps then the first inequality is strict. If s > l then, by claim 4.1.6, Pl ≥ min(bs, (αl−αs)vs+Ps).
Thus, if Pl < bs then Pl ≥ (αl − αs)vs + Ps which again implies αsvs − Ps ≥ αlvs − Pl.

This finishes the proof of envy-freeness. For the proof of uniqueness in section 4.3 below it will
be useful to state one more easy implication of the above:

Claim 4.1.7. Fix any slot s, and suppose that there exists a player j > s such that Ps = (αs −
αj)vj + Pj < bj, and vj 6= vs. Then for any slot l > s we have αsvs − Ps > αlvs − Pl.



Proof. We show that ps
s,s > Ps which implies the claim by Lemma 1. By the proof of claim 4.1.6

we have ps
j,s = qs

j,s = min((αs − αj)vj + Pj , bj) = Ps. Therefore if ps
s,s = Ps then ps

s,s = ps
j,s. Since

ps
s,s 6= bs and ps

j,s 6= bj we get by corollary 3.3.1 that vs = vj , a contradiction. Thus ps
s,s > Ps, and

the claim follows.

4.2 Incentive Compatibility

We prove incentive-compatibility by first identifying some basic properties that the auction exhibits
when one player changes her bid while all other players’ bids are fixed.

Claim 4.2.1. Fix a player, i, and arbitrary declarations of the other players. Consider two dec-
larations of player i, (v, b) and (ṽ, b̃) and suppose player i wins slot l and pays Pl when declaring
(v, b), and wins slot l̃ and pays P̃l̃ when declaring (ṽ, b̃). (l and/or l̃ can take the value k + 1 to
denote that player i loses). Then,

1. If ṽ ≥ v and either b = b̃ or b > min(Pl̃, P̃l̃) then:

(a) l̃ ≤ l.

(b) For any slot s ≥ l, P̃s = Ps.

(c) P̃l̃ ≥ Pl̃.

2. If v = ṽ and b̃ > b > P̃l̃ then l̃ = l.

3. If v = ṽ and b̃ > b then l̃ ≤ l.

While these properties are rather intuitive, the proof is technical, and is deferred to appendix A.
Despite the fact that all properties are intuitive, they may be misleading, and the qualifiers and
requirements detailed in the properties are really necessary (this also explains why the proof gets
technical). For example, property 1b might appear true even without the requirement that b = b̃

or b > min(Pl̃, P̃l̃). Therefore it is interesting to see a counter example to this property when these
requirements does not hold: Consider a setting of two slots with α1 = 1000 and α2 = 1, and three
players with types θ1 = (1, 1000), θ2 = (10, 10) and θ3 = (11, 11) (recall that the first number is the
value and the second number is the budget). Suppose player 3 changes her type to θ̃3 = (11, 1001).
Quite surprisingly, the price of slot 2 then strictly decreases.

We next bootstrap these properties to show full incentive compatibility. Throughout, we fix
the true type of player i to be (vi, bi), and denote by ui(v, b) player i’s utility when declaring
some type (v, b) (the declaration of all other players is fixed throughout). We need to show that
ui(vi, bi) ≥ ui(v, b), for any other type (v, b). Since we already established that player i does not
envy a losing player, we have ui(vi, bi) ≥ 0. Thus we consider only types (v, b) such that ui(v, b) > 0
(otherwise ui(vi, bi) ≥ 0 ≥ ui(v, b)). We show separately for each coordinate that reporting the
true value in that coordinate weakly increases the player’s utility, and then aggregate.



Claim 4.2.2. For any b > bi and any v, ui(v, b) ≤ ui(v, bi).

Proof. Suppose player i wins slot s and pays Ps when declaring (v, b). Since ui(v, b) > 0 we have
bi > Ps and by property 2, when declaring (v, bi) player i still wins slot s and still pays Ps. Therefore
ui(v, b) ≤ ui(v, bi) and the claim follows.

Claim 4.2.3. For any b ≤ bi and any v, ui(v, b) ≤ ui(vi, b).

Proof. Suppose player i wins slot s and pays Ps when declaring (vi, b) and wins slot s̃ and pays P̃s̃

when declaring (v, b) (s and/or s̃ can take the value k + 1 to denote that i loses). Since b ≤ bi, i’s
payment is at most her budget, and so she has a non-negative utility from both declarations. By
envy-freeness, αsvi − Ps ≥ αs̃vi − Ps̃, where Ps̃ denotes the price of slot s̃ when player i declares
(vi, b). If v > vi then s̃ ≤ s by property 1a of claim 4.2.1 and then P̃s̃ ≥ Ps̃ by property 1c.
If v < vi then s̃ ≥ s by property 1a and then P̃s̃ = Ps̃ by property 1b. In any case, we have
αs̃vi − Ps̃ ≥ αs̃vi − P̃s̃. We get ui(vi, b) = αsvi − Ps ≥ αs̃vi − P̃s̃ = ui(v, b), as claimed.

Claim 4.2.4. For any b ≤ bi, ui(vi, b) ≤ ui(vi, bi).

Proof. Let f(v, b) denote the slot assigned to player i when declaring (v, b), and P (v, b) be i’s
payment when declaring (v, b). Define g(v, b) = αf(v,b) ·v−P (v, b), i.e. this is i’s utility if she declares
(v, b) and if her true value is indeed v. We will argue that g(v, b) =

∫ v
0 αf(x,b)dx. For v′ > v we have

by property 1a that f(v′, b) ≤ f(v, b). In addition, if f(v′, b) = f(v, b) then P (v′, b) = P (v, b) by
property 1b. Let v∗1, ..., v

∗
L be the discontinuity points of f(·, b) (i.e. when b is fixed and v increases

from 0 to ∞). In other words, for any index 1 ≤ l ≤ L − 1 and any v∗l < x1 < x2 < v∗l+1 we
have f(x1, b) = f(x2, b) and P (x1, b) = P (x2, b). Therefore ∂g(v,b)

∂v |v=x1 = ∂g(v,b)
∂v |v=x2 = αf(x1,b).

Since there is a finite number L ≤ k of such discontinuity points we get g(v, b) =
∫ v
0 αf(x,b)dx. By

property 3 we have f(x, b) ≥ f(x, b′) for any b ≤ b′, implying using the above that g(v, b) ≤ g(v, b′).
Since b ≤ bi we get ui(vi, b) = g(vi, b) ≤ g(vi, bi) = ui(vi, bi), and the claim follows.

Lemma 2. Truthfulness is an ex-post equilibrium of the Generalized Position Auction.

Proof. We need to show that any false declaration (v, b) yields weakly smaller utility than the true
declaration (vi, bi). If b > bi we have ui(v, b) ≤ ui(v, bi) ≤ ui(vi, bi), where the first inequality
follows from claim 4.2.2 and the second inequality follows from claim 4.2.3. If b ≤ bi we have
ui(v, b) ≤ ui(vi, b) ≤ ui(vi, bi), where the first inequality follows from claim 4.2.3 and the second
inequality follows from claim 4.2.4.

4.3 Uniqueness

We finish the analysis by showing that the Generalized Position Auction is the unique mechanism
that satisfies all the desirable properties discussed at the beginning. We need one additional natural
requirement:



Definition 5 (No Positive Transfers (NPT)). A mechanism has the “No Positive Transfers” (NPT)
property if no player receives a positive payment from the mechanism.

This property is necessary for the uniqueness result. Consider for example a setting of one item
and two players, with b1 = 1, b2 = 2, and v1 = 5, v2 = 3. The Generalized Position Auction sells the
item to player 2 for a price of 1. A different mechanism that violates NPT is: first pay each player
a subsidy of 4 dollars (this increases the bidders’ budgets). Then run our mechanism using the
updated budgets. It is not hard to verify that this is truthful, individually rational, and envy-free.
However the result will now be different: player 1 will receive the item and will pay 3 dollars. It
is interesting to note that the usual quasi-linear setting does not exhibit such a phenomena, and it
is well-known that one can normalize the payment of a losing player to be 0 without affecting the
outcomes of the mechanism being considered. As this simple example shows, when budgets limits
are a real constraint this is not quite the case.

Together with ex-post IR, NPT implies that the payment of a losing player is exactly zero. This
is in fact the only use of the NPT property, and one can replace the NPT requirement with a “zero
payment for losers” requirement. This seems like a natural and common property.

A second issue that requires some attention is ruling out ties. Clearly, if the Generalized
Position Auction encounters a tie during its execution, it can be decided in several ways, affecting
the outcome. Thus, the uniqueness result can only hold when there are no ties, i.e. when all types
are distinct w.r.t. both the value and the budget.

Let M denote the Generalized Position Auction, and fix any other truthful mechanism M ′ that
satisfies NPT, envy freeness, Pareto optimality, and ex-post individual rationality.

Lemma 3. For any tuple of types (~v,~b) such that vi 6= vj and bi 6= bj, M and M ′ output the same
slot assignment and the same payments. Moreover, this holds even if the values of the players are
fixed and are publicly known, and only the budgets are private information.11

Proof. Fix any tuple of types (~v,~b) in T ∗. Define w(s), w′(s) as the winners of slot s in mechanisms
M,M ′, respectively, and let Pl, P

′
l be the payment of the winner of slot l in mechanisms M,M ′,

respectively. We start with two claim and then prove the lemma by induction.

Claim 4.3.1. P ′s ≥ Ps for any slot 1 ≤ s ≤ k.

Proof. Let A contain all slots 1 ≤ s ≤ k such that Ps > P ′s, and suppose by contradiction that A is
not empty. For any s ∈ A, let l be the slot that i = w(s) wins in M ′ (i.e. w(s) = w′(l) = i). We claim
that l ∈ A: if P ′l ≥ Pl then we get αsvi−Ps ≥ αlvi−Pl ≥ αlvi−P ′l ≥ αsvi−P ′s > αsvi−Ps, where
the first inequality follows from envy-freeness of M since Pl ≤ P ′l < bi, and the third inequality
follows from envy-freeness of M ′ since P ′s < Ps < bi, and we get a contradiction. Thus, a player

11Alternatively, it can be stated that the budgets are common knowledge and the values are private information.
For simplicity we restrict attention to just one version.



wins a slot in A in M if and only if she wins wins a slot in A in M ′. We will show that there exists
at least one player that does not receive a slot in A in M but must win a slot in A in M ′, and will
thus get a contradiction.

Let s∗ = max(s ∈ A). By claim 4.1.6 let i = w(l) for l > s∗ be a player such that Ps∗ =
min(bi, Pl + (αs − αl)vi) (we may choose l = k + 1 to denote the fact that i loses in M). We have
P ′s∗ < Ps∗ ≤ bi, and αlvi − Pl < αs∗vi − P ′s∗ . Note that i wins a slot l /∈ A in M (since l > s∗).
We will show that i must win a slot in A in M ′, which will be a contradiction. For any slot j /∈ A
(including j = k + 1 to consider the possibility that i loses in M ′), either P ′j ≥ bi, or Pj ≤ P ′j < bi,
in which case αjvi − P ′j ≤ αjvi − Pj ≤ αlvi − Pl < αs∗vi − P ′s∗ , where the second inequality follows
by the envy-freeness of M since Pj < bi. Since P ′s∗ < bi and M ′ is envy-free it follows that i cannot
win slot j in M ′. Thus player i must win some slot in A, a contradiction.

Claim 4.3.2. Define the set B to contain all slots 1 ≤ l ≤ k such that Pl = P ′l . Then the set of
players that win a slot in B is identical in both M and M ′, i.e. { w(s) | s ∈ B } = { w′(s) | s ∈ B }.

Proof. Assume by contradiction that there exists a player i that wins a slot s ∈ B in M , and a slot
l /∈ B in M ′ (as before we can have s = k + 1). Note that by claim 4.3.1 and since l /∈ B we have
P ′l > Pl. We get αsvi − P ′s = αsvi − Ps ≥ αlvi − Pl > αlvi − P ′l , where the first inequality follows
by envy-freeness of M , since Pl < P ′l < bi. Since P ′s = Ps < bi this contradicts the envy-freeness of
M ′.

Claim 4.3.3. Let B be as defined in claim 4.3.2. Then for any s ∈ B we have w(s) = w′(s).

Proof. Fix a slot s ∈ B. We assume that for any l ∈ B with l < s we have w(l) = w′(l) and
prove w(s) = w′(s), which implies the claim by induction. Let i = w(s). Suppose by contradiction
that w′(s) = j 6= i. Suppose player j wins slot sj in M . By claim 4.3.2 we have sj ∈ B and by
assumption we have sj > s. By claim 4.1.6 we have Ps ≥ min(bj , (αs−αsj )vj +Psj ). Since P ′s = Ps

and P ′sj
= Psj , envy-freeness of M ′ implies Ps = (αs − αsj )vj + Psj < bj . Claim 4.1.7 then implies

that for any slot l > s we have αsvi − Ps > αlvi − Pl. Now suppose player i wins slot si in M . By
claim 4.3.2 we have si ∈ B and by assumption we have si > s. Since P ′s = Ps and P ′si

= Psi we
get αsvi − P ′s > αsivi − Psi . Since P ′s = Ps < bi we get a contradiction to the envy-freeness of M ′.
Thus w(s) = w′(s) and the claim follows.

We now prove by induction on l = k, ..., 0 that, for all type declarations: (1) the set of players
that win slots 1, ..., l is the same in both mechanisms (they do not necessarily win the same slots),
and (2) for any slot k ≥ s > l, the same player wins slot s in both mechanisms, and P ′s = Ps. The
lemma will then follow by taking l = 0.

To prove the base case of l = k we need to argue that the same set of players lose in both
mechanisms: for any slot s ≤ k, if s ∈ B (as defined in claim 4.3.2 above) then a losing player i in



M cannot win s in M ′ by claim 4.3.3. If s /∈ B then by claim 4.3.1 we have P ′s > Ps ≥ min(bi, αsvi)
and since M ′ is ex-post IR it follows that w′(s) 6= i. Hence i must lose in M ′ as well.

We now assume correctness for some index l ≤ k and prove the inductive claim for l−1. All we
need to show is that w(l) = w′(l), and Pl = P ′l . Let i = w(l) be the winner of slot l in mechanism
M , and suppose that i = w′(l′). Note that l′ ≤ l by the induction assumption. We first prove that
Pl′ = P ′l′ . By claim 4.3.1 we have Pl′ ≤ P ′l′ , and assume by contradiction that the inequality is
strict. Since bi > P ′l′ we have by envy-freeness that αlvi − Pl ≥ αl′vi − Pl′ . Since Pl′ < P ′l′ we can
pick a small enough ε > 0 such that αlvi− (Pl + ε) > αl′vi−P ′l′ . Now if player i declares a different
type (vi, Pl + ε) (i.e. the same value and a budget just above her price in M) then by property 2
of claim 4.2.1 we have that player i wins slot l in M in the new type declaration as well. By the
induction assumption player i wins some slot l′′ ≤ l in M ′ in the new declaration, and her new
payment P ′′ is at most her new budget Pl +ε. We get αl′′vi−P ′′ ≥ αlvi−(Pl +ε) > αl′vi−P ′l′ . Thus
player i strictly increased her utility be misreporting her type, contradicting the truthfulness of M ′.
Thus Pl′ = P ′l′ . Therefore l′ ∈ B, and by claim 4.3.3 we have w′(l′) = w(l′). Since w(l) = w′(l′) by
assumption we get l′ = l, and the claim follows.

5 Conclusions

We have designed a generalized position auction, for players with private values and private bud-
get constraints. Our auction is built on top of the generalized English auction, and its ex-post
equilibrium outcome is individually rational, Pareto-optimal and envy-free. Moreover, any auction
that satisfies these properties, and in addition does not make positive transfers to the players, must
yield in ex-post equilibrium the same outcome as our auction, for every tuple of distinct types.
This uniqueness result holds even if values are public knowledge and only budgets are private.

While the generalized English auction uses only one price trajectory, our auction must use
k different price trajectories, that concurrently ascend. This implies that our auction needs to
exchange more messages than the generalized English auction, specifically, we need an order of
n · k2 messages while the generalized English auction requires an order of n · k messages. This is an
artifact of the introduction of budgets, and the only other mechanism for position auctions with
budgets, that is based on the Demange-Gale-Sotomayor ascending auction (and was described in
the Introduction), shows a similar increase in the amount of required messages. In fact, Aggarwal
et al. (2009) prove that the amount of messages exchanged in their auction is in the order of n · k3,
and our auction performs slightly better than that, requiring only an order of n ·k2 messages. Thus,
from a practical point of view, our auction has a slight advantage. In future research it may be
interesting to determine what is the minimal possible number of messages needed in order to reach
the unique incentive compatible and envy-free outcome.

Our setup here is a one-shot setup, in which the auction runs only once. A more advanced (and
realistic) setup would assume a repeated stochastic scenario, in which the same position auction is



being conducted several times, where the number of occurrences and their frequency is uncertain.
This change of setup complicates the analysis even without budgets, and with the existence of
budgets it adds an important dimension that is now missing from our analysis. In particular, in such
a setup new strategic issues are being added since a bidder that artificially increases competition
in current auction exhausts competitors’ budgets and thus affects their future ability to compete.
This issue was considered for other auction formats, for example by Benoit and Krishna (2001),
but in the context of position auctions this issue is hardly understood. While our setup does not
directly add to its understanding, as there is just one single auction being conducted, our analysis
is a necessary first step that starts to shed some light on the complicated effects of budgets in
common position-auction formats.

A Proof of Claim 4.2.1

We rename player i to be il, to avoid notational confusion later on. Recall that we consider two
declarations of player l, (v, b) and (ṽ, b̃), where ṽ ≥ v and b̃ ≥ b. Suppose player il wins slot l and
pays Pl when declaring (v, b), and wins slot l̃ and pays P̃l̃ when declaring (ṽ, b̃). (l and/or l̃ can
take the value k + 1 to denote that player il loses). We use x̃ to describe the variable x in the
execution for (ṽ, b̃), for example B̃1

l , q̃
1
i,l, and so on. The following lemma will be repeatedly used

as a tool to prove the five properties. Its proof is given in appendix B.

Lemma 4.

1. If either b = b̃ or b > min(Pl̃, P̃l̃) then there exists a slot 1 ≤ j∗ ≤ l such that the set of
winners of slots 1, ..., j∗ in both declarations is the same set.

2. If v = ṽ and b > min(Pl̃, P̃l̃) then there exists a slot 1 ≤ j∗ ≤ l̃ such that the set of winners of
slots 1, ..., j∗ in both declarations is the same set.

Proof of properties 1a and 1b. We prove the two properties by induction on the number of
slots k. In addition we inductively prove that the winner of every slot s > l is the same player
in both declarations, and the losing players are the same. If k = 1 then the claim is immediate
from the definition of the mechanism. We assume correctness for k′ < k slots and prove for k slots.
By lemma 4 there exists a slot j∗ ≤ l such that the winners of slots 1, ..., j∗ are the same in both
declarations. If j∗ < l then at iteration j∗ + 1 in both declarations we are left with the same set of
players, and a mechanism for k − j∗ < k slots, and the induction assumption implies the claim. If
j∗ = l then clearly the first property holds since player il wins a slot 1, ..., j∗ in both declarations.
In addition the set of players at iteration j∗ + 1 is the same for both declarations, hence each slot
j > j∗ has the same winner in both declarations, which implies by claim 4.1.6 that P̃s = Ps for any
slot s ≥ l, as claimed.



Proof of property 1c. If l̃ = l then the claim is immediate from the above. Otherwise some
other player l1 wins slot l in the declaration (ṽ, b̃), and suppose l1 won slot s1 in declaration (v, b).
Note that s1 < l since by the previous proof the winners of slots l + 1, ..., k plus all losers are
the same in both declarations. Let l2 be the player that wins slot s1 in declaration (ṽ, b̃), and
suppose l2 won slot s2 in declaration (v, b). We again have s2 < l. When this terminates we must
reach a player lr that won slot sr = l̃ in declaration (v, b). Denote s0 = l. We argue by induction
on i = 0, ..., r that P̃si ≥ Psi . The base case of i = 0 follows from the previous proof. We now
assume by induction that P̃si ≥ Psi and prove that P̃si+1 ≥ Psi+1 . Note that bli+1

> P̃si ≥ Psi . If
P̃si+1 ≥ bli+1

> Psi+1 then we immediately get the inductive claim. Otherwise assume P̃si+1 < bli+1
.

Player li+1 wins slot si+1 in (v, b), hence αsi+1vli+1
− Psi+1 ≥ αsivli+1

− Psi . On the other hand
player li+1 wins slot si in (ṽ, b̃), hence αsivli+1

− P̃si ≥ αsi+1vli+1
− P̃si+1 . Since P̃si ≥ Psi it follows

that P̃si+1 ≥ Psi+1 , as claimed.

Proof of property 2. We first note that by property 1a we have l̃ ≤ l. We prove by induction on
the number of slots k. If k = 1 then the claim is immediate from the definition of the mechanism.
We assume correctness for k′ < k slots and prove for k slots. By lemma 4, using its second part
for slot l̃, there exists a slot j∗ ≤ l̃ such that the winners of slots 1, ..., j∗ are the same in both
declarations. If j∗ < l̃ then at iteration j∗ + 1 in both declarations we are left with the same set of
players, and a mechanism for k − j∗ < k slots, and the induction assumption implies the claim. If
j∗ = l̃ ≤ l then since player il wins one of the slots 1, ..., j∗ in both declarations it must follow that
l̃ = l.

Proof of property 3. Suppose by contradiction that l̃ > l. Then we have b > Pl ≥ Pl̃, where
the second inequality follows from envy-freeness (claim 4.1.6). But then according to property 1a
we get l̃ ≤ l, a contradiction.

B Proof of Lemma 4

Proof. We start with a basic property that states that, in the first iteration of the auction, the
weakest player i in slot s among all players j that win some slot sj < s must be strong at slot si

(si is the slot that i receives). This implies, for example, that if all weak players in slot s remain
weak in all better slots s′ < s (in the first iteration) then the set of winners of slots 1...s is exactly
B1

s .

Claim B.0.4. Fix some slot s. Let Ws = { j /∈ B1
s and j wins some slot s′ ≤ s }, suppose that

Ws is not empty, and fix some i ∈ argminj∈W p1
j,s. Let si ≤ s be the slot that i wins. Then i ∈ B1

si
.

Proof. Assume by contradiction that i /∈ B1
si

. Then there must exist a player j that wins some slot
sj < si and p1

j,si
< p1

i,si
, otherwise by claim 4.1.2 we have p1

i,si
= psi

i,si
which by bid monotonicity

implies i /∈ Bsi
si

, contradicting the fact that i wins si. Since j wins sj < si and j /∈ B1
si

we have



p1
j,si
6= bj . By claim 3.3.1 we get vi > vj . However since j wins sj < s, the minimality of i’s bid at

s implies p1
j,s ≥ p1

i,s. Since vi > vj we get p1
i,s = bi. Since i /∈ B1

s this contradicts the fact that i
wins si ≤ s.

Corollary B.0.1. Fix some slot s. Suppose that for any player i /∈ B1
s we have that either i /∈ B1

j

for all slots j < s or that i does not win any slot j < s. Then the set of players that win slots
1, ..., s is B1

s .

Let s∗ ∈ {l, l̃} be the slot that satisfies the conditions of claim 4.

Claim B.0.5. p1
i,s∗ = p̃1

i,s∗ for any player i 6= il such that i /∈ B1
s∗ and p1

i,s∗ ≤ p1
il,s∗

. In addition, if
s∗ = l̃ then p1

il,s∗
= p̃1

il,s∗
.

Proof. Assume first that s∗ = l̃. Since b̃ > b > Pl̃ ≥ Q
1
l̃

and v = ṽ we have p̃1
i,s = p1

i,s for any player
i and any slot s ≥ l̃.

Now assume that s∗ = l. We prove by induction on the slot s = k...l. By definition p1
i,k = p̃1

i,k

for any player i 6= il. Assume correctness for slot s + 1 and let us prove for s. If il ∈ B1
s+1 then

p1
i,s = min(bi, (αs−αs+1)vi +min(Q1

s+1, p
1
i,s+1)) = p̃1

i,s for every player i 6= il, since by the induction
assumption Q1

s+1 = Q̃1
s+1 and p1

i,s+1 = p̃1
i,s+1. Otherwise assume il /∈ B1

s+1. For every player i with
p1

i,s+1 ≤ p1
il,s+1 we again get by definition p1

i,s = p̃1
i,s.

Otherwise p1
i,s+1 > p1

il,s+1. Since il /∈ B1
s+1 and il wins slot l < s + 1 we have p1

il,s+1 6= bil ,
which implies by claim 3.3.1 that vi > vil . Therefore for any i with p1

i,s ≤ p1
il,s

we have p1
i,s = bi ≥

p̃1
i,s ≥ p1

i,s. Hence p̃1
i,s = p1

i,s = bi, implying p̃1
i,s = p1

i,s = bi. If il ∈ B1
s then all players i /∈ B1

s have
p1

i,s ≤ p1
il,s

, and the claim follows.

Note that, by this lemma, if il ∈ B1
s∗ then we get p1

i,s∗ = p̃1
i,s∗ for any player i /∈ B1

s∗ , and hence
B̃1

s∗ = B1
s∗ .

We also note that q̃1i,s ≥ q1i,s and p̃1
i,s ≥ p1

i,s for any player i and any slot s (this follows by
a simple induction on the slot s = k, ..., 1). We say that a player i /∈ B1

s∗ “jumped” if i 6= il,
p1

il,s∗
≥ p1

i,s∗ and there exists a slot j ≤ s∗ − 1 such that i ∈ B1
j .

Claim B.0.6. If a player i 6= il with i /∈ B1
s∗ and p1

il,s∗
≥ p1

i,s∗ did not jump then p1
i,j = p̃1

i,j and
i /∈ B̃1

j for any slot j ≤ s∗.

Proof. Since i /∈ B1
s∗ and p1

il,s∗
≥ p1

i,s∗ but i did not jump we have i /∈ B1
j for any slot j ≤ s∗.

We show the claim by induction on j = s∗, s∗ − 1, ..., 1. The base case j = s∗ follows since
slot s∗ is an anchor. Assume that p̃1

i,j+1 = p1
i,j+1 and i /∈ B̃1

j+1 for some j < s∗. Then p̃i,j =
min(bi, (αj − αj+1)vi + p̃i,j+1) = min(bi, (αj − αj+1)vi + pi,j+1) = pi,j , completing the first part of
the inductive step. Since p̃i′,j ≥ pi′,j for any player i′, i /∈ B1

j implies i /∈ B̃1
j .

Claim B.0.7. If il ∈ B1
s∗ and there does not exist a player that jumped then the set of players that

win slots 1, ..., s∗ is identical in both declarations (v, b) and (ṽ, b̃).



Proof. Every player i /∈ B1
s∗ satisfies p1

il,s∗
≥ p1

i,s∗ , and, since no such player jumped, corollary B.0.1
implies that the players in B1

s∗ win slots 1, ..., s∗ in declaration (v, b). We will show that the players
in B̃1

s∗ win slots 1, ..., s∗ in declaration (ṽ, b̃), which will imply the claim since B1
s∗ = B̃1

s∗ . Assume
by contradiction that some player i /∈ B̃1

s∗ wins slot si ≤ s∗ (w.l.o.g. i has a minimal bid in slot s∗

among all such players). By claim B.0.4 it follows that i ∈ B̃1
si

. On the other hand since B1
s∗ = B̃1

s∗

we have i /∈ B1
s∗ , and i 6= il. Thus claim B.0.6 implies i /∈ B̃1

si
, a contradiction.

Using this, if il ∈ B1
s∗ and there does not exist a player that jumped then we can conclude the

proof of lemma 4 by choosing j∗ = s∗. The next claim shows that in any other case there must be
a player that jumped.

Claim B.0.8. If il /∈ B1
s∗ then there exists a player i that jumped such that p1

i,s∗ < p1
l,s∗.

Proof. If s∗ = l then by claim 4.1.2 there is a player i′ that wins slot si′ < s∗ and p1
i′,s∗ < p1

l,s∗ ,
and by claim B.0.4 there exists a player i with p1

i,s∗ ≤ p1
i′,s∗ that wins slot si < s∗ and i ∈ B1

si
(i

may be i′). Therefore i jumped. If s∗ = l̃ then by assumption p1
il,s∗

= p̃1
il,s∗

and therefore il /∈ B̃1
s∗ .

As above this implies that there exists a player i 6= il that wins slot si < s∗ such that p̃1
i,s∗ < p̃1

il,s∗

and i ∈ B̃1
si

. Player i also satisfies i /∈ B1
s∗ and p1

il,s∗
> p1

i,s∗ . We argue that i jumped: otherwise
claim B.0.6 implies i /∈ B̃1

j for any slot j ≤ s∗, a contradiction.

Therefore we assume that there exists a player that jumps. For two players i, j and a slot s, we
denote p1

i,s � p1
j,s if p1

i,s > p1
j,s, or p1

i,s = p1
j,s and i � j. Let i∗ be a player with minimal bid p1

i,s∗

w.r.t. � among all players that jumped. Let j∗ ≤ s∗ − 1 be some slot such that i∗ ∈ B1
j∗ .

Claim B.0.9. For any player i 6= il such that i /∈ B1
j∗, and for any slot j ≤ j∗, we have: (1)

i /∈ B1
j , (2) i /∈ B̃1

j , and (3) pi,j = p̃i,j. In addition, if il /∈ B1
j∗ then l̃ > j∗ and l > j∗.

Proof. Consider a player i /∈ B1
j∗ . Assume first that p1

i∗,s∗ � p1
i,s∗ (note that this implies that i 6= il

since p1
i∗,s∗ < p1

il,s∗
). By the minimality assumption on i∗ we have that i /∈ B1

j for any slot j < s∗.
By claim B.0.6 we also have pi,j = p̃i,j and i /∈ B̃1

j for any slot j < s∗. If pi,s∗ = pi∗,s∗ and i � i∗

(note that this still implies i 6= il) then since i /∈ B1
j∗ and i∗ ∈ B1

j∗ we must have p1
i,j∗ = bi, which

implies the three properties.
Otherwise pi,s∗ > pi∗,s∗ . We must have vi > vi∗ , otherwise we get by claim 3.3.1 that pi∗,s∗ = bi∗

which is a contradiction since i∗ /∈ B1
s∗ and i∗ ∈ B1

j∗ . Since pi,j∗ ≤ pi∗,j∗ we get p1
i,j∗ = bi, and

since i /∈ B1
j∗ then i /∈ B1

j for any j < j∗. In addition, if i 6= il or i = il and b = b̃ then bi = p̃1
i,j∗ ,

implying i /∈ B̃1
j and pi,j = p̃i,j for any j ≤ j∗.

This establishes the three properties for i 6= il, and that, if b = b̃ and il /∈ B1
j∗ then player il

does not win any slot j ≤ j∗. If il /∈ B1
j∗ and b < b̃ then we get p1

l,j∗ = b from the above paragraph.
Thus player il cannot win any slot j ≤ j∗ in declaration (v, b), hence l > j∗. It remains to show
l̃ > j∗. Since b < b̃ we have by assumption b > min(Pl̃, P̃l̃). If b > Pl̃ then since Pj ≥ p1

il,j
= b for



any j ≤ j∗ we get l̃ > j∗. Similarly, if b > P̃l̃ then since P̃j ≥ p̃1
il,j
≥ p1

il,j
= b for any j ≤ j∗ we

again get l̃ > j∗.

By claim B.0.9, the conditions of corollary B.0.1 hold for slot j∗ and declaration (v, b) (note
that by claim B.0.9, if il /∈ B1

j∗ then player il wins slot l > j∗ in declaration (v, b)). Therefore the
players in B1

j∗ win slots 1, ..., j∗ in this declaration. To finish the proof of lemma 4 we argue that
these players are the winners of slots 1, ..., j∗ in declaration (ṽ, b̃) as well.

Assume by contradiction that there exists a player x /∈ B1
j∗ that wins a slot sx ≤ j∗ in declaration

(ṽ, b̃). By claim B.0.9 we have x 6= il since l̃ > j∗. Assume without loss of generality that x has
a minimal bid p̃1

x,j∗ among all players x /∈ B1
j∗ that win some slot s ≤ j∗ in declaration (ṽ, b̃). By

claim B.0.9, p1
x,j∗ = p̃1

x,j∗ . Since p1
i,j∗ ≤ p̃1

i,j∗ for any player i it follows that x /∈ B̃1
j∗ as well. By

claim B.0.9 we have x /∈ B̃1
sx

, and therefore by claim B.0.4 there must exist y /∈ B̃1
j∗ such that

p̃1
y,j∗ < p̃1

x,j∗ and y wins some slot sy ≤ j∗. By the minimality assumption on the choice of x we
must have y ∈ B1

j∗ . Therefore p1
y,j∗ ≥ p1

x,j∗ . But we also have p1
y,j∗ ≤ p̃1

y,j∗ < p̃1
x,j∗ = p1

x,j∗ , a
contradiction.
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