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Abstract: Pseudo-random functions (PRFs) introduced by Goldwasser, Goldreich, and Micali (FOCS 1984),
are one of the most important building blocks in cryptography. A PRF family is a family of seeded functions
{fs}, with the property that no efficient adversary can tell the difference between getting oracle access to a
random PRF function fs, and getting oracle access to a truly random function.
In this work, we consider the problem of constructing pseudo-random functions that are resilient to leakage.
Unfortunately, even if a single bit about the secret seed s ∈ {0, 1}k is leaked, then there is no hope to construct
a PRF, since the leakage can simply be the first bit of fs(0), and thus fs(0) is distinguishable from uniform.
Therefore, when dealing with leakage, we must relax the definition.
We consider the following relaxation: Instead of requiring that for each input x, the value fs(x) looks random,
we require that it looks like it has high min-entropy, even given oracle access to fs everywhere except point x.
We call such a function family a pseudo-entropy function (PEF) family. In particular, a leakage-resilient PEF
family has the property that given leakage L(s) and given oracle access to fs, it is hard to predict fs on any
input that was not queried. We construct such a leakage-resilient PEF family under the DDH assumption (or
more generally, assuming the existence of lossy functions with the property that the output size is not much
larger than the input size).
We also show that leakage-resilient PEFs imply leakage-resilient random-input PRFs, where the requirement is
that for a random input r, the value fs(r) looks uniform, even given the leakage L(s) and given oracle access to
fs anywhere accept at point r (the leakage L(s) is independent of r, but the oracle fs is present even after the
pair (r, fs(r)) is given).
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1 Introduction

Pseudo-random functions, defined by Goldwasswer,
Goldreich, and Micali [18] are one of the fundamen-
tal building blocks in cryptography. Such functions
are efficiently generated using a short secret random
seed s, and yet look truly random, in the sense that
oracle access to a pseudo-random function fs is com-
putationally indistinguishable from oracle access to a
truly random function.

In this work, we investigate the following question:
What if we don’t even have a short random seed, but
all we have is some secret seed with min-entropy? Al-
ternatively: What if an arbitrary poly-time function of
the secret seed is leaked (such that some min-entropy
is left)? It is easy to see that in such cases it is im-

possible to generate even one bit of randomness.

Instead, the question we ask is: Can we generate
entropy?

One of the motivations for studying this problem
comes from the recent proliferation of side channel
attacks, where attackers try to use physical means
to get information about the secret keys. These at-
tacks exploit the physical characteristics of the execu-
tion of a cryptographic device, such as timing, power
consumption, electro-magnetic radiation, and so forth
(see [21,27,28,31] and the references therein). Thus,
in recent years there has been a major effort by the
cryptographic community to construct cryptographic
schemes that remain secure even if part of the secret
key is leaked. This is in contrast to the traditional
approach, which assumes that secret keys are gener-
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ated using perfectly random bits, and once they are
generated, they are perfectly secret.

By now, there have been many constructions of
cryptographic primitives that are resilient to leakage
[1-4,6,7,10,11,14-16,19,20,23-26,29,30,33,35]. In this
work, we continue the study of leakage-resilient cryp-
tography, where we focus on constructing pseudo-
random functions that are resilient to leakage. How-
ever, what we find intriguing about this work, and
what conceptually distinguishes this work from previ-
ous ones, is that we don’t have any additional random-
ness beyond the seed (which is partially leaked). In
all other results in the regime of leakage-resilient cryp-
tography, fresh randomness is used either to extract
randomness from the weak key (e.g., in the encryp-
tion process [1]), or to hide the secret key (e.g., in the
signature process [26]). Alternatively, many results
restrict the type of leakage,1 in a way that allows the
use of (deterministic) extractors [7,14,29]. Here, on
the other hand, after the seed is partially leaked, we
have no fresh randomness in our hands, and the only
assumption we can make about our secret seed, is that
it has some min-entropy. Thus, we can only hope to
generate (computational) min-entropy, as opposed to
(computational) randomness.

1.1 Our results

We construct a family of functions F = {fs} such
that given oracle access to a random function in the
family fs ∈ F , and given an arbitrary (poly-time)
leakage L(s), such that the seed s still has (enough)
min-entropy conditioned on L(s), the value of the
function at any point that was not queried has (com-
putational) min-entropy. We call such function fam-
ily a leakage-resilient pseudo-entropy function (PEF)
family.

We consider two definitions for PEFs: A selective
one, which requires that for any a priori selected input
x, the value of fs(x) has (computational) min-entropy
given the leakage L(s) and oracle access to fs at any
point except x. The other definition is an adaptive
one, which requires that for any input x, which may
be chosen after seeing the leakage L(s) and after ac-
cessing the oracle fs, the value of fs(x) has (computa-
tional) min-entropy given the leakage L(s) and oracle
access to fs at any point except x. We note that in
both definitions we allow the leakage function to be

1For example, they rely on the “only computation leaks in-
formation” assumption, introduced in the influential work of
Micali and Reyzin [29].

adaptive. More specifically, the adversary may choose
to leak one bit at a time in an adaptive manner, while
making oracle calls to fs in between leakages. We refer
the reader to Section 3 for formal definitions.

We construct a selectively secure PEF family under
the DDH assumption.2 Then, we show that under the
sub-exponential hardness of the DDH assumption,3

our PEF family is also adaptively secure. We refer
the reader to Section 4 for details about our construc-
tion.

We note that any (adaptively secure) PEF family
F = {fs} has the property that even given oracle ac-
cess to a random fs and given leakage L(s), it is (com-
putationally) hard to predict the value of the function
at any point that was not queried. Thus, a leakage
resilient PEF family is, in particular, a deterministic
leakage-resilient message authentication code (MAC),
where two players who share a secret s authenticate a
message m by appending to it the value fs(m).

Deterministic MACs are interesting in the context
of leakage, since they are not only resilient to leak-
age from the secret key, but they are also (trivially)
resilient to leakage from the secret randomness used
during the authentication process (as this process is
deterministic, and thus no randomness is used). Most
known leakage resilient MACs or leakage-resilient sig-
nature schemes cannot tolerate leakage from the secret
randomness used during the authentication or signing
process, and the leakage function is only a function of
the secret key. An exception is the very recent (and in-
dependent) work of Boyle, Segev and Wichs [5], which
constructs a signature scheme that is resilient to leak-
age from both the secret key and the randomness used
during the signing process (assuming the total leak-
age from all the randomness used in all signatures, is
bounded).4

We note that for some applications, generating en-
tropy (or unpredictability) is not enough, and gener-
ating randomness is crucial. Motivated by such appli-
cations, we show how to construct a leakage-resilient
random-input PRF family from any (selectively se-

2More generally, we assume the existence of a lossy function
family with the property that the output size is not much larger
than the input size. In Appendix B we construct such a family
based on the DDH assumption.

3Namely, we assume that there exists a constant ε > 0 such
that no ppt adversary can distinguish between a DDH tuple
and a random tuple with probability greater than 2−λε

, where
λ ∈ N is the security parameter. See Theorem 4.2.

4Previously, Brakerski et. al. [6] (among other things) proved
a similar result in the random oracle model.
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cure) leakage-resilient PEF family. The former is a
family of functions F with the property that given an
arbitrary (poly-time) leakage L(s), such that s still
has (enough) min-entropy conditioned on L(s), for a
random point r, the pair (r, fs(r)) looks random even
given oracle access to fs anywhere except at point r
(where the adversary may access the oracle even af-
ter the pair (r, fs(r)) is given). It is the randomness
of the input r that allows us to argue the (computa-
tional) randomness of fs(r), even conditioned on the
leakage L(s) and conditioned on the information given
by the oracle.

We note that a random-input PRF is weaker than
a (standard) PRF, but is stronger than a weak PRF,
where the requirement is that (r, fs(r)) looks random
even given many pairs of the form (ri, fs(ri)), where
the ri’s are uniformly and independently distributed.
Namely, for weak PRFs the adversary is not given
oracle access to the function, but is given the evalu-
ation of the function on a bunch of random inputs.
It is known how to construct a leakage-resilient weak
PRF family, but it was not known how to construct a
leakage-resilient random-input PRF family.

1.2 Background and related work

Several leakage models were considered in the liter-
ature. Roughly speaking, one can partition these leak-
age models into two categories: one-time (or bounded)
leakage, and continual leakage. The bounded leakage
models, which our leakage model resides in, consider
the case where leakage occurs only once, whereas con-
tinual leakage models consider the case where leakage
occurs over and over again.

Bounded leakage models. These models consider the
case that an adversary gets some leakage L(s) of the
secret s, and the requirement is that the scheme re-
mains secure even given this leakage. Clearly, in order
to get meaningful results, we must somehow bound
the leakage function, since otherwise it can leak the
entire secret, i.e., L(s) = s, and security is clearly
breached.

Akavia, Goldwasser, and Vaikuntanathan [1] con-
sidered the class of shrinking leakage functions.
Namely, their requirement is that |L(s)| < |s|. Naor
and Segev [30] considered a slightly more general class
of leakage functions which consists of all the leakage
functions L such that L(s) must leave s with some
min-entropy. Our results hold in the Naor-Segev leak-
age model.

Other, more general, leakage models are the auxil-
iary input model of Dodis et. al. [11], and the bounded
retrieval model of [8,13]. However, due to the de-
terministic nature of a PRF family, it is impossible
to construct a leakage resilient PEF family in these
models. We refer the reader to Appendix A for more
details. It is known how to construct encryption
schemes, identity-based encryption schemes, signature
schemes, weak PRF schemes, and more, in various of
these leakage models [1-3,9,11,19,26,30].

Continual leakage models. Roughly speaking, these
models can again be partitioned into two categories:
The first considers memory leakage, where each leak-
age function is a function of the entire memory (as in
the bounded leakage models), and the second consid-
ers the “only computational leaks information” model
of Micali and Reyzin [29], where each leakage func-
tion can depend only on the part of the secret that
was used during the computation. Note that the for-
mer model is a generalization of the bounded leakage
models. The latter model, on the other hand, is not
a generalization of the bounded leakage models, and
is incomparable. On the one hand, leakage can occur
over and over again, but on the other hand, the leakage
functions are restrictive to the part of the secret used
during the computation, and thus secret randomness
that was not used during the computation remains
truly random and hidden. We note that until very
recently, all schemes secure against continual leakage
considered the “only computation leaks information”
model, where it was shown how to construct signature
schemes and block ciphers [14,15,33]. Using (simple)
secure hardware, it was shown how to convert any
circuit into a leakage resilient one [16,20,25]. Very
recently, various cryptographic schemes that are se-
cure in the continual memory leakage model were pre-
sented, including encryption schemes, identity-based
encryption schemes, and signature schemes [6,10].

We note that constructing PEFs or even weak PRFs
in a continual leakage model remains an interesting
open problem. Recently, Dodis and Pietrzak [12]
made some progress in this direction by construct-
ing PRFs that are resilient to continual leakage in the
Micali-Reyzin model of “only computation leaks infor-
mation”. However, their result is restricted to a single
a priori chosen leakage function.

1.3 Our techniques

We start by giving an overview of our construction
of a leakage resilient PEF family. Our construction fol-
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lows the GGM paradigm [18]. However, rather than
using a pseudo-random generator as the main building
block (as in [18]), we use a family of lossy functions as
our main building block, a notion formulated by Peik-
ert and Waters [32]5 (yet appeared implicitly in prior
work). Such a family consists of two types of func-
tions: lossy functions and injective ones. The lossy
ones (information theoretically) lose most of the infor-
mation about the input; i.e., the image is significantly
smaller than the domain. The injective functions, on
the other hand, are injective. It is required that it is
(computationally) hard to distinguish between a ran-
dom lossy function in the family and a random in-
jective function in the family. We refer the reader to
Section 2.1 for the formal definition.

Let F be a lossy function family. Suppose for now,
that we have a common reference string (CRS) which
consists of 2k pairs of random injective functions from
F , denoted by

crs =
(

f1,0, f2,0, . . . , fk,0

f1,1, f2,1, . . . , fk,1

)

(We will get rid of this assumption, by taking the crs
to be part of the seed of the PEF function).

We construct a PEF function family G, where each
function in G is associated with a secret seed s ∈
{0, 1}n. For input x = (x1, . . . , xk) ∈ {0, 1}k, define

gs(x) = f1,x1 ◦ f2,x2 ◦ . . . ◦ fk,xk
(s).

Namely, the value gs(x) is computed by first apply-
ing the function fk,xk

on input s; then applying the
function fk−1,xk−1 to the value fk,xk

(s); then applying
the function fk−2,xk−2 to the value fk−1,xk−1(fk,xk

(s)),
and so on. Note that for gs to be computable in
polynomial time, we must require that the underly-
ing lossy functions are not expanding by too much, as
this would incur an exponential blowup. Indeed, in
Appendix B, we rely on the DDH assumption to con-
struct a lossy function family, where both the domain
and the range are {0, 1}n.

Our family G has the property that if one of the
functions f1,x1 , . . . , fk,xk

is lossy, then the value gs(x)
(together with the crs) contains very little information
about the secret seed s. On the other hand, if they
are all injective then the value gs(x) (together with
the crs) contains all the information about the seed s.
In fact, we prove the stronger property that if all the
functions f1,x1 , . . . , fk,xk

are injective, and all the rest
5Their formulation included an additional trapdoor require-

ment.

are lossy, then the value gs(x) (together with the crs)
contains all the information about s, and yet all the
values {gs(x′)}x′ 6=x together contain very little infor-
mation about s; namely, using very little information
about s, one can compute gs everywhere except at
point x.

Using this property, together with the property
that it is hard to distinguish between random lossy
functions and random injective functions in F , we
prove that G is a leakage resilient PEF family with
selective security.6 To this end, for an a pri-
ori chosen x ∈ {0, 1}k, we first change the func-
tions f1,1−x1 , . . . , fk,1−xk

to be random lossy functions
(rather than injective ones), and claim that no ppt ad-
versary can tell the difference. Then, we claim that the
amount of information needed to compute gs every-
where except at point x, together with the crs and the
leakage L(crs, s), is quite small. Hence, gs(x), which
contains all the information about s, has high min-
entropy.

We now formalize this intuition. For any given x, an
oracle to gs anywhere except point x, can be simulated
given only the crs and the following values:

yk , fk,1−xk
(s)

yk−1 , fk−1,1−xk−1(fk,xk
(s))

...
y1 , f1,1−x1(f2,x2(. . . fk,xk

(s)))

This is the case, since for any x′ 6= x, let i ∈ [k]
be the largest index for which x′i 6= xi. Then one can
efficiently compute gs(x′) from yi and crs.

Note that if the k functions f1,x1 , . . . , fk,xk
are in-

jective and the other k functions f1,1−x1 , . . . , fk,1−xk

are lossy, in the sense that they lose all information
about the input except at most nε bits, then y1, . . . , yk

contains only k · nε bits of information about s (think
of k · nε as significantly smaller than n).

More formally, we prove that G is a leakage-resilient
PEF family by arguing that if there exists a ppt ad-
versaryA that distinguishes gs(x) from a random vari-
able with high min-entropy, given the leakage and ora-
cle access to gs everywhere except x, then there exists
a ppt adversary B who distinguishes between lossy
functions and injective ones. The adversary B is given
k functions that are either injective or lossy. He will
use these functions instead of f1,1−x1 , . . . , fk,1−xk

, and

6Later in this section, we mention how to go from selective
security to adaptive security.
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will try to use A to distinguish between gs(x) and a
random variable with high min-entropy. Then if the
functions were lossy, then gs(x) indeed has high min-
entropy, and thus A will fail to distinguish, whereas if
these functions are injective then he will succeed with
non-negligible probability.

All this holds assuming the definition of a PEF is a
selective one, in the sense that for any a priori chosen
x, the value gs(x) is computationally indistinguish-
able from having high min-entropy, even given crs,
the leakage L(crs, s) and oracle access to gs (every-
where except at point x). In order to get adaptive
security, where the adversary can choose x after see-
ing the leakage and the crs, we rely on subexponential
hardness assumptions, and simply guess x in advance.
Note that x ∈ {0, 1}k, and we can take k = nδ for
an arbitrary small constant δ > 0. Thus, we guess x

correctly with probability 2−nδ

, and hence rely on the
assumption is that it is hard to distinguish a random
lossy function from a random injective function, with
probability 2−nδ

. We refer the reader to Section 4 for
details.

Finally, we mention how we go from a (selectively
secure) leakage-resilient PEF family G to a leakage-
resilient random-input PRF family G∗. Recall that for
a random-input PRF family, the requirement is that
for a random input r the value g∗s (r) looks random,
even given oracle access to g∗s everywhere except point
r.

The idea is simply to apply a randomness extractor
to the output gs(x). Unfortunately, we do not have de-
terministic randomness extractors, and to extract ran-
domness from gs(x) we need fresh randomness. The
question is: where do we get this randomness from?
One idea is to take it from the input. Namely, define

g∗s (x, r) = Ext(gs(x); r),

where Ext is a seeded extractor, and r is the random
seed for the extractor. The problem with this solu-
tion is that the resulting g∗s is not a random-input
PRF, since given a random input (x, r) the adversary
is allowed to query the oracle at points (x, r′) for any
r′ 6= r, and thus can retrieve gs(x). Thus, instead, we
use a collision-resistant hash function h, and define:

g∗s (x) = Ext (gs(h(x));x) .

Note, however, that the seed x is not independent
of the source gs(h(x)). Therefore, instead of using
a seeded extractor, we let Ext be a 2-source extrac-
tor, that takes as input two independent weak sources,

where one has min-entropy grater than 1/2. The 2-
source extractor of Raz [34] has this property. The
idea would be to think of h(x) as fixed, and thus the
sources gs(h(x)) and x are independent. Moreover,
x has min-entropy rate greater than 1/2 even con-
ditioned on h(x), and gs(h(s)) has (computational)
min-entropy, even given h(x) and given the crs and
the leakage L(crs, s), since it is a PEF. We refer the
reader to Section 5 for details.

2 Preliminaries and definitions

The min-entropy of a random variable X ∈ {0, 1}n

is defined by

H∞(X) , − log
(

max
x∈{0,1}n

Pr[X = x]
)

.

The conditional min-entropy of the random variable
X ∈ {0, 1}n conditioned on a random variable Y ∈
{0, 1}k is defined by

H̃∞(X|Y ) , − logEy←Y

[
2−H∞(X|Y =y)

]
. (1)

We say that two sequences of random variables
X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computation-
ally indistinguishable, if for any ppt algorithm A, for
any constant c ∈ N, and for every sufficiently large
λ ∈ N,

|Pr[A(Xλ) = 1]− Pr[A(Yλ) = 1]| < 1/λc

This is denoted by X ≈ Y .

In what follows, we recall the definitions of a lossy
function family and a pseudo-random function family.
We denote the security parameter by λ. We denote
the domain of the lossy functions by {0, 1}n and we
denote the domain of the pseudo-random functions by
{0, 1}k, where both n and k are functions of the secu-
rity parameter λ. In our results, k will be significantly
smaller than n, though both n and k will be polyno-
mially related to λ.

2.1 Lossy functions

Lossy trapdoor functions were introduced in the
seminal paper of Peikert and Waters [32]. Such func-
tion families have two types of functions: lossy func-
tions and injective functions, where lossy functions
have the property that the output contains very lit-
tle information about the input (information theoreti-
cally), and where the injective ones are generated with
a trapdoor for inversion. It is required that it is hard
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to distinguish between a random lossy function and a
random injective function in the family. In this work,
we do not need the trapdoor property, and only con-
sider families of lossy functions.

Definition 2.1. A function family F = {Fλ}λ∈N is
an ω-lossy family if the following holds:

1. There are two seed generation algorithms Genloss

and Geninj such that

(a) {Genloss(1λ)}λ∈N ≈ {Geninj(1λ)}λ∈N

(b) For every λ ∈ N and for every s ∈ Geninj(1λ),
the function fs : {0, 1}n → {0, 1}∗ is injective.

(c) For every λ ∈ N and for every s ∈ Genloss(1λ),
the function fs : {0, 1}n → {0, 1}∗ is lossy, in the
sense that its image size is at most 2n−ω.7

2. There is a poly-time evaluation algorithm Eval
such that for every λ ∈ N, every s ∈ Genloss(1λ) ∪
Geninj(1λ), and every x ∈ {0, 1}n,

Eval(s, x) = fs(x).

In this work, we need the lossy family F to have
the property that for every fs ∈ F , the output length
is almost the same as the input length. Indeed, we
assume for the sake of simplicity of exposition, that
our lossy function family has the property that the
domain and the range are the same.

We also consider an additional property, which we
call the extraction property, and is defined below. This
property is not needed to obtain our main results, and
is only used to show that our constructions satisfy
the standard PRF definition (see Section 4 for more
details).

Definition 2.2. A lossy function family F =
{Fλ}λ∈N is a (strong) α-computational extractor
if for every sequence of random variables {Xn(λ)}λ∈N
with min-entropy α(n),

{s, fs(Xn(λ))}s←Genloss(1λ) ≈ {s, Un(λ)}s←Genloss(1λ)

2.2 Pseudo-random functions

We recall the standard definition of a pseudo-
random function family (PRF).

7According to the definition of conditional min-entropy (See
Equation 1), this implies that for every s ∈ Genloss(1

λ),
H̃∞(X|s, fs(X)) ≥ n− ω, where X ← {0, 1}n.

Definition 2.3. A function family G = {Gλ}λ∈N is
said to be pseudo-random if the following holds:

1. The exists a seed generation ppt algorithm Gen
that takes as input a security parameter 1λ, and gen-
erates a seed s ← Gen(1λ).

2. There exists a poly-time evaluation algorithm
Eval such that for every λ ∈ N, every s ∈ Gen(1λ),
and every x ∈ {0, 1}k, it holds that Eval(s, x) = gs(x).

3. For every ppt adversary A,
∣∣∣∣ Pr
s←Gen(1λ)

[Ags(1λ) = 1]− Pr[AO(1λ) = 1]
∣∣∣∣

= negl(λ)

where O is a truly random function with the same do-
main and range as gs.

3 Pseudo-entropy functions (PEFs)

Our goal in this paper is to construct a PRF family
that is robust to leakage of the secret seed. Clearly,
this is impossible since the leakage can contain the
least-significant-bit of gs(0). In such a case, it is easy
to distinguish gs(0) from uniform. Thus, when dealing
with leakage, we must relax the definition of a PRF.

We consider the following relaxed definition: Rather
than requiring that for each input x, the value gs(x)
is indistinguishable from being truly random, we re-
quire that gs(x) is indistinguishable from having high
min-entropy, even given oracle access to gs everywhere
except point x. We call such a family a pseudo-entropy
function (PEF) family. We consider two definitions:
The first is selective security, which requires that the
input x should be selected by the adversary before get-
ting oracle access to gs and before seeing the leakage.
The second is adaptive security where the input x can
be chosen by the adversary after getting the leakage
and oracle access to gs.

Definition 3.1. A function family G = {Gλ}λ∈N is
said to be an `-leaky β-pseudo-entropy function (β-
PEF) family with selective security if the following
holds:

1. Gen is a ppt algorithm that takes as input the
security parameter 1λ, and generates a pair (pp, s) ←
Gen(1λ), where pp is the public part of the seed (which
does not need to be kept secret) and s is the secret seed.

2. G = {Gλ}λ∈N is a function family, where each
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g ∈ Gλ is parameterized by public parameters pp and
a secret seed s ∈ {0, 1}n. For the sake of clarity, we
denote the function by gs, and omit the dependence on
pp from the notation.

3. There exists a modified ppt algorithm Gen′ such
that for any sequence of inputs x = x(λ) ∈ {0, 1}k(λ),
the following holds:

(a)
{
Gen′(1λ, x)

}
λ∈N ≈

{
Gen(1λ)

}
λ∈N

(b) For any poly-time computable leakage function
L with output length `(n),

H̃∞ (gs(x)|, . . . , , L(pp, s), {gs(x′)}x′ 6=x) ≥ β(n),

where (pp, s) ← Gen′(1λ, x), and n = |s|.

Definition 3.2. A function family G = {Gλ}λ∈N
is said to be an `-leaky β-PEF family with adaptive
security if properties (1) and (2) from above hold,
and property (3) is strengthened as follows:

There exists a modified ppt algorithm Gen′ such
that {

Gen′(1λ)
}

λ∈N ≈
{
Gen(1λ)

}
λ∈N

and for any ppt adversary A, for every poly-time leak-
age function L with output size `(n), and for

x = Ags(pp, L(pp, s))

that was not sent by A as an oracle query,

H̃∞ (gs(x)|, . . . , , L(pp, s){gs(x′)}x′ 6=x) ≥ β(n),

where (pp, s) ← Gen′(1λ), and n = |s|.

4 A construction of a PEF family

In this section we construct a leaky PEF family
G = {Gλ}λ∈N. We first construct such a family
with selective security, and then show how to obtain
adaptive security from any selective secure family by
strengthening the assumptions. We note that the lat-
ter follows using a standard black-box reduction, and
does not contain new ideas (but does require strength-
ening the assumptions).

In our construction, each secret seed is of length
n, the inputs are of length k, and the outputs are of
length n, where n and k are polynomially related to
the security parameter λ, and k = nδ for some small
constant δ ∈ (0, 1), and thus is significantly smaller
than n.

Our construction makes use of an ω-lossy function
family F = {Fλ}λ∈N. Each function in Fλ has inputs
and outputs of length n. We set the parameter ω to
be: ω = n − nε for some constant 0 < ε < 1 − δ, and
we get an `-leaky β-PEF, where ` = n − 2nδ+ε and
β = nδ+ε.

We also show that if the underlying lossy family F
is a γ-computational extractor for γ = n− nδ+ε, then
our function family G is a PRF family (in the standard
sense).

4.1 The construction

• Gen. The seed generation algorithm takes as in-
put a security parameter 1λ, and generates as public
parameters 2k random functions using Geninj(1λ),8

pp =
(

f1,0, f2,0, . . . , fk,0

f1,1, f2,1, . . . , fk,1

)

and a secret seed s ← {0, 1}n.

• Eval. The Eval function takes as input public
parameters pp, a seed s ∈ {0, 1}n, and an input x ∈
{0, 1}k, where x = (x1, . . . , xk), and outputs

gs(x) = f1,x1 ◦ f2,x2 ◦ . . . ◦ fk,xk
(s)

Notice that for the definition of gs to make sense, we
need the output of fi,xi to be a valid input to fi−1,xi−1 .
This is why we need the restriction that the output
size of fi,xi is not significantly larger than its input
size, since otherwise this may result in an exponential
blowup. For the sake of simplicity, we assume that
fi,xi : {0, 1}n → {0, 1}n.

Theorem 4.1. The function family G = {Gλ} de-
scribed above is an `-leaky β-PEF family with selective
security, assuming the underlying lossy function fam-
ily F = {Fλ} is ω-lossy, where

ω = n− nε, k = nδ, ` = n− 2nδ+ε, β = nδ+ε.

Theorem 4.2 The function family G = {Gλ} de-
scribed above is an `-leaky β-PEF family with adaptive
security, assuming the underlying lossy function fam-
ily F = {Fλ} is ω-lossy, with the strengthened require-
ment that no ppt adversary can distinguish between a

8Alternatively, we could have generated the functions using
Genloss(1

k). These two cases are computationally indistinguish-
able.
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random lossy seed and a random injective seed with
probability 2−nδ

/poly(λ), where

ω = n− nε, k = nδ, ` = n− 2nδ+ε, β = nδ+ε.

We also prove that G = {Gλ} is a (standard) PRF
family.

Lemma 4.3. The function family G = {Gλ} de-
scribed above is a PRF family, assuming the under-
lying lossy function family F = {Fλ} is ω-lossy and
is a γ-computational extractor, where

ω = n− nε, γ = n− nδ+ε, k = nδ.

In what follows we prove Lemma 4.3, Theorem 4.1
and Theorem 4.2. We refer the reader to Section 1.3
for a high-level overview of the proofs.

1) Proof of Lemma 4.3.

It is easy to see that properties (1) and (2) of def-
inition 2.3 are satisfied. As for property (3), we first
show that for every ppt adversary A and for every
sequence of inputs x = x(λ) ∈ {0, 1}k(λ),

|Pr[Ags(1λ, pp, x, gs(x)) = 1]−
Pr[Ags(1λ, pp, x, Un) = 1]| = negl(λ)

assuming A does not query its oracle on input x, and
where the probabilities are over (pp, s) ← Gen(1λ),
Un ← {0, 1}n, and the random coin tosses of A.

To prove this, suppose for the sake of contradiction
that there exists a ppt adversary A, a sequence of
inputs x = x(λ) ∈ {0, 1}k(λ) which A does not send
as oracle queries, and a polynomial p, such that for
infinitely many λ’s

|Pr[Ags(1λ, pp, x, gs(x)) = 1]−
Pr[Ags(1λ, pp, x, Un) = 1]| > 1

p(λ)

Consider a new distribution of the public param-
eters pp, denoted by pp′, where the functions
f1,x1 , . . . , fk,xk

are generated according to the injec-
tive seed generation algorithm Geninj, and the func-
tions f1,1−x1 , . . . , fk,1−xk

are generated according to
the lossy seed generation algorithm Genloss. Property
(a) of the lossy function family implies that

{x, pp} ≈ {x, pp′}.
Thus, for infinitely many λ’s,

|Pr[Ags(1λ, pp′, x, gs(x)) = 1]−
Pr[Ags(1λ, pp′, x, Un) = 1]| > 1

p(λ)
− negl(λ)

Next, note that the oracle gs can be simulated every-
where except at point x, given only pp′ and given the
sequence

yk , fk,1−xk
(s)

yk−1 , fk−1,1−xk−1(fk,xk
(s))

...
y1 , f1,1−x1(f2,x2(. . . fk,xk

(s)))

This is the case, since for any x′ 6= x, let i ∈ [k]
be the largest index for which x′i 6= xi. Then one can
efficiently compute gs(x′) given only yi and pp′. This,
together with the equation above, implies that

{(y1, . . . , yk), pp′, gs(x)}λ∈N,pp′,s←Gen(1λ) 6≈ (2)

{(y1, . . . , yk), pp′, Un}λ∈N,pp′,s←Gen(1λ)

Recall that the functions f1,1−x1 , . . . , fk,1−xk
were

generated according to the lossy seed generation al-
gorithm Genloss(1λ). Thus, the string (y1, . . . , yk)
contains only k · (n − ω) bits of information about
s ∈ {0, 1}n. Namely,

H̃∞ (s|pp′, (y1, . . . , yk)) ≥ n− k(n− ω) = n− knε

= n− nδ+ε

= γ(n)

Moreover, the string (y1, . . . , yk) is independent of
the function f1,x1 , and thus we can assume that
this string was computed before the function f1,x1

was chosen. Therefore, conditioned on all the func-
tions in pp′ except for f1,x1 , and conditioned on
(y1, . . . , yk), the string s is a random variable with
min-entropy γ(n), and is independent of f1,x1 . There-
fore, f2,x2(f3,x3(. . . (fk,xk

(s)))) is a random variable
with min-entropy γ(n) that is independent of f1,x1 .
The fact that F is a γ-computational extractor im-
plies that gs(x) = f1,x1(f2,x2(. . . (fk,xk

(s)))) is compu-
tationally indistinguishable from uniform, even given
(y1, . . . , yk) and pp′, contradicting Equation (2).

We conclude that for every ppt adversary A and
for every sequence of inputs x = x(λ) ∈ {0, 1}k(λ),

|Pr[Ags(1λ, pp, x, gs(x)) = 1]

−Pr[Ags(1λ, pp, x, Un) = 1]| = negl(λ) (3)

assuming x is not an oracle query, where the proba-
bilities are over (pp, s) ← Gen(1λ), Un ← {0, 1}n, and
over the random coin tosses A.

Now, to prove that G satisfies property (3) of a PRF
family, suppose for the sake of contradiction that there
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exists a ppt adversary A such that for infinitely many
λ’s,
˛̨
˛̨ Pr
s←{0,1}n

[Ags (1λ, pp) = 1]− Pr[AO(1λ, pp) = 1]

˛̨
˛̨ > 1

poly(λ)

Let Q be an upper-bound on the number of queries
that A makes, and assume without loss of generality
that all these queries are distinct. Let g

(i)
s be a “hy-

brid” oracle that answers the first i queries using a
truly random function, and the last Q− i queries ac-
cording to gs. Note that g

(0)
s is the same as gs, and

that the oracle g
(Q)
s is the same as a random oracle,

assuming the number of oracle queries is at most Q.
Using a standard hybrid argument, the equation above
implies that there exists i ∈ [Q] such that
˛̨
˛̨ Pr
s←{0,1}n

[Ag
(i)
s (1

λ
, pp) = 1]− Pr

s←{0,1}n
[Ag

(i−1)
s (1

λ
, pp) = 1]

˛̨
˛̨

> 1

(Q · poly(λ))
> 1

poly(λ)

where the latter inequality follows from the fact that
Q is polynomially related to λ.

Denote by x the i’th oracle query of A. Note that
x is a random variable that is independent of gs, since
all the previous oracle queries were answered via the
random oracle. Moreover, A can distinguish between
(x, gs(x)) and (x,Un) given oracle access to gs (with-
out querying on x). Thus, there exists an efficiently
generated random variable x ∈ {0, 1}n and there ex-
ists a ppt adversary B such that

∣∣∣∣ Pr
s←{0,1}n

[Bgs(1λ, pp, x, gs(x)) = 1]−

Pr
s←{0,1}n

[Bgs(1λ, pp, x, Un) = 1]
∣∣∣∣ > 1

poly(λ)

Taking the string x ∈ {0, 1}n that maximizes the gap
in the equation above, we get a contradiction to Equa-
tion (3). ¤

2) Proof of Theorem 4.1.

Fix any ppt leakage function L with output length
`(n). As in the proof of Lemma 4.3, we consider a new
Gen algorithm, denoted by Gen′. The algorithm Gen′

is a ppt algorithm that takes as input the security pa-
rameter 1λ and an input x ∈ {0, 1}k(λ), and outputs a
random secret seed s ← {0, 1}n (distributed as the se-
cret seed generated by Gen) and public paramters pp′

which are distributed differently than the ones gener-
ated by Gen. Here pp′ is a sequence of 2k functions,
where the functions f1,x1 , . . . , fk,xk

are generated ac-
cording to the injective seed generation algorithm

Geninj(1λ), and the functions f1,1−x1 , . . . , fk,1−xk
are

generated according to the lossy seed generation algo-
rithm Genloss(1λ).

Fix any sequence of inputs x = x(λ) ∈ {0, 1}k(λ).
Property (a) of the lossy function family implies that

{x, pp, s} ≈ {x, pp′, s} (4)

where (pp, s) ← Gen(1λ) and (pp′, s) ← Gen′(1λ, x).

As in the proof of Lemma 4.3, notice that for
(pp′, s) ← Gen′(1λ, x), the oracle gs can be simulated
everywhere except at point x, given only pp′, x, and
given the sequence

yk , fk,1−xk
(s)

yk−1 , fk−1,1−xk−1(fk,xk
(s))

...
y1 , f1,1−x1(f2,x2(. . . fk,xk

(s)))

This is the case, since for any x′ 6= x, let i ∈ [k]
be the largest index for which x′i 6= xi. Then one
can efficiently compute gs(x′) given only yi and pp′.
Therefore,

H̃∞
`
gs(x)|pp′, {gs(x

′)}x′ 6=x

´ > H̃∞
`
gs(x)|pp′, x, y1, . . . , yk

´

Recall that the functions f1,1−x1 , . . . , fk,1−xk
were

generated according to the lossy seed generation al-
gorithm Genloss(1λ). Thus, (y1, . . . , yk) contains only
k · (n − ω) bits of information about s ∈ {0, 1}n.
Namely,

H̃∞ (s|pp′, y1, . . . , yk) = n− k(n− ω)
= n− knε

= n− nδ+ε

= n− β(n).

Recall that

gs(x) = f1,x1(. . . (fk,xk
(s))).

The fact that all the functions f1,x1 , . . . , fk,xk
are in-

jective, together with the equation above, implies that

H̃∞ (gs(x)|pp′, y1, . . . , yk) > n− β(n),

and thus

H̃∞ (gs(x)|pp′, L(pp′, s), {gs(x′)}x′ 6=x) >
n− β(n)− ` = n− β − (n− 2β) = β

as desired.

¤
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We next prove Theorem 4.2. We do not provide a
formal proof, as this type of conversion of selective se-
curity to adaptive security is quite standard. Instead
we give a proof sketch.

3) Proof Sketch of Theorem 4.2.

Define Gen′(1λ) that simply guesses the input
x ← {0, 1}k in advance, and runs the selective
Gen′(1λ, x). Thus, in our case, it generates the func-
tions f1,x1 , . . . , fk,xk

using the injective seed, and
generates the functions f1,1−x1 , . . . , fk,1−xk

using the
lossy seed. Assume that the function family G is not
adaptively secure. Then there exists a ppt adversary
A that breaks the adaptive security. We construct a
ppt adversary B that breaks the selective security, as
follows: B simply emulates A; if A chooses an input
that is different than the input x guessed by our Gen′,
then B simply outputs a random bit. Otherwise, B
continues the emulation. The probability that B con-
tinues the emulation (i.e., the probability that Gen′

guessed the input x correctly) is 2−k = 2−nδ

. Thus, B
breaks selective security with probability 2−k/poly(λ).
Therefore, B can be used to distinguish between a
random lossy seed and a random injective seed with
probability 2−k/poly(λ).

5 Leakageresilient random-inputPRFs

In this section, we show how PEFs can be used to
construct another relaxed version of leakage resilient
PRFs. Here, we relax the requirement that for every
input x the value gs(x) looks random, and require that
for a random input r the value gs(r) looks random,
even given oracle access to gs everywhere except point
r. We call such a family a random-input PRF family.

Definition 5.1. A function family G = {Gλ}λ∈N is
said to be an `-leaky random-input PRF family if
for any poly-time leakage function L such that |L(s)| =
`(|s|), and for every ppt adversary A that does not
query the oracle at point r,

n
Ags

“
1λ, L(s), r, gs(r)

”o
s←Gen(1λ),r←{0,1}k

≈
n
Ags

“
1λ, L(s), r, U

”o
s←Gen(1λ),r←{0,1}k,U←{0,1}|gs(r)|

In this section, we show how to convert any `-leaky
β-PEF family G = {Gλ} with selective security into
an `-leaky random-input PRF family G∗ = {G∗λ}, as
long as β > ω(log λ). The idea is simply to apply an
extractor to the output of G.

Recall that an `-leaky β-PEF family with selec-
tive security has the property that for every input
x ∈ {0, 1}k, the value gs(x) is indistinguishable from
having min-entropy β, given the public parameters
pp, leakage L(pp, s), and oracle access to gs every-
where except at the point x. Therefore, as long as
β > ω(log n) = ω(log λ), where n = |gs(x)| = poly(λ),
applying an extractor to gs(x) results with a string
that looks truly random even given pp, L(pp, s), and
oracle access to gs everywhere except at the point x.

Unfortunately, we do not have deterministic ran-
domness extractors, and to extract randomness from
gs(x) we need fresh randomness or an independent
weak source of randomness. The question is: where
do we get such (weak) independent randomness from?
To this end, we use a collision-resistant hash function
h, and define:

g∗s (x) = Ext (gs(h(x));x) ,

where Ext is a 2-source extractor, where one source
is required to have min-entropy rate greater than 1/2
and the other min-entropy β. The 2-source extractor
defined by Raz [34] has this property. The idea would
be to think of h(x) as fixed, and thus the sources
gs(h(x)) and x are independent. Moreover, we take
a hash function h that is shrinking enough, so that
x has min-entropy rate greater than 1/2 even condi-
tioned on h(x), and gs(h(x)) has min-entropy β even
conditioned on h(x) and on pp, L(pp, s).

5.1 The construction

We start with an `-leaky β-PEF G = {Gλ} which
is selectively secure. Let H = {Hλ} be a family of
collision resistant hash-functions, where each h ∈ Hλ

is a function

h : {0, 1}3k → {0, 1}k.

Let
Ext : {0, 1}n × {0, 1}3k → {0, 1}m

be a strong 2-source extractor with the property that
if the first source has min-entropy at least β, and the
second source has min-entropy rate at least 2/3, then
the output is statistically close to random. As noted,
the extractor of Raz [34] satisfies this property.

We use G, H and Ext, to construct an `-leaky
random-input PRF family G∗, as follows:

1. The seed generation algorithm Gen∗ takes as in-
put the security parameter 1λ, and does the follow-
ing:
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(a) Run the seed generation algorithm Gen corre-
sponding to the PEF family G, and compute a pair
(pp, s) ← Gen(1λ).
(b) Choose a random collision resistant hash func-
tion h ← Hλ.
Output the public parameters pp∗ = (pp, h) and the
secret seed s.
2. For each pp∗ = (pp, h) and each secret seed s, let

g∗s (x) , Ext(gs(h(x)), x).

where for the sake of clarity, we eliminate from the
notation the dependance of g∗s and gs on pp and
h.

Theorem 5.1 The function family G∗ = {G∗λ} de-
scribed above is an `-leaky random-input PRF family,
assuming the underlying function family G = {Gλ}
is an `-leaky β-PEF family with selective security for
β > ω(log λ), and assuming the underlying family
H = {Hλ} is a collision resistant hash family.

4) Proof of Theorem 5.1.

Suppose for the sake of contradiction that there
exists a poly-time leakage function L such that
|L(pp∗, s)| = `(|s|), and there exists a ppt adver-
sary A that does not query its oracle at point r, such
that

{
Ag∗s

(
1λ, pp∗, L(pp∗, s), r, g∗s (r))

)}

6≈{
Ag∗s

(
1λ, pp∗, L(pp∗, s), r, U

)}

where the distributions are over (pp∗, s) ← Gen∗(1λ),
r ← {0, 1}3k, U ← {0, 1}m, and over the random coin
tosses of A. Note that the oracle g∗s can be simulated
given oracle access to gs. Moreover, the fact that H is
collision resistant implies that for any ppt adversary,
given a random r and oracle access to g∗s everywhere
except at point r, the oracle can be simulated by oracle
access to gs everywhere except at point h(r). This
is the case since if the adversary finds x 6= r such
that h(x) = h(r) then it breaks the collision resistant
property ofH. Therefore, there exists a ppt adversary
B that does not query its oracle at the point h(r), such
that

{Bgs
(
1λ, pp∗, L(pp∗, s), r,Ext(gs(h(r)), r)

)}

6≈ (5)
{Bgs

(
1λ, pp∗, L(pp∗, s), r, U

)}

where the distributions are over (pp∗, s) ← Gen∗(1λ),
r ← {0, 1}3k, U ← {0, 1}m, and over the random coin
tosses of B.

Fix a random collision resistant hash function h ←
Hλ. The fact that G is an `-leaky β-PEF with selective
security implies that there exists a ppt algorithm Gen′

such that for every r ∈ {0, 1}3k,

Gen′(1λ, h(r)) ≈ Gen(1λ) (6)

and for every poly-time leakage function L (which may
depend on h) with output size `(|s|), and for (pp, s) ←
Gen′(1λ, h(r))

H̃∞
`
gs(h(r))|r, pp, h, L(pp, s), {gs(x)}x6=h(r)

´
> β(n).

This, together with the fact that Ext is a strong
two-source extractor, and together with the fact that
r|h(r) has min-entropy rate 2/3, implies that

{
pp, h, L(pp, s), {gs(x)}x 6=h(r), r,Ext(gs(h(r)), r)

}

≈{
pp, h, L(pp, s), {gs(x)}x6=h(r), r, U

}

Therefore, for every ppt algorithm M,
{Mgs

(
1λ, pp∗, L(pp∗, s), r,Ext(gs(h(r)), r)

)}
λ∈N

≈{Mgs
(
1λ, pp∗, L(pp∗, s), r, U

)}
λ∈N

where the distributions are over (pp∗, s) where pp∗ =
(pp, h), h ← Hλ, (pp, s) ← Gen′(1λ, h(r)), and over
r ← {0, 1}3k and the random coin tosses of M. This,
together with Equation (6), contradicts Equation (5).
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A Additional leakage models

In this section we mention two additional bounded
leakage models: The auxiliary input leakage model of
Dodis et. al. [11], and the bounded retrieval model
of [8,13]. Both are more general than the shrinking
leakage model of Akavia et. al. [1] and the model of
Naor and Segev [30].

The auxiliary input leakage model considers the
class of all leakage functions that are (computation-
ally) hard to invert; namely all functions L such that
given L(s) it is computationally hard to find s. It is
impossible to construct a leakage resilient PEF fam-
ily in this model, since it is impossible to prove that
for every x that was not queried, the value of fs(x)
has (computational) entropy, as the leakage function
can simply leak the value of fs(x) (or a hard-to-invert
function of fs(x) that leaves fs(x) with no computa-
tional entropy).

The bounded retrieval model considers a (big) ab-
solute bound N on the leakage size, and the goal is
to construct a scheme that is secure against leakage of
size N , where the requirement is that the efficiency of
the scheme depends only logarithmically on N , though
the secret key is of size poly(N). It is impossible to
construct a leakage-resilient PEF family in this model,
since the requirement is that the time it takes to eval-
uate fs depends only logarithmically on the size of s,
and thus can depend only on a few bits of s. There-
fore, for any input x, the leakage can contain the bits
in s that are used in the evaluation of fs(x). Notice
that the fact that fs is deterministic implies that the
same bits of s are used in each evaluation of fs(x).

B Constructions of lossy functions

In this section we construct a lossy function family
with the desired property, that the functions have the
same domain and range. The construction is based
on the DDH assumption, and is reminiscent to con-
structions that were given in previous work on lossy
trapdoor functions [17,22,32]. However, all the con-
structions in these works, albeit having a trapdoor,
did not have the property that the image and the
range are of the same size, a property that is essential
for us. Recall that we use lossy functions to construct
pseudo-entropy functions (PEFs), and our PEFs com-
pose k lossy functions. This makes it essential that the
underlying lossy functions do not stretch their input
(even by a small constant multiplicative factor), and
all previous constructions do stretch the input by at
least a constant multiplicative factor.

5) Notation.

Let A = (ai,j)i,j∈[n] ∈ Zn×n
q be a matrix over the

group Zq, and let g be a generator of a multiplicative
group of prime order q. We denote by gA the n-by-n
matrix whose (i, j) entry is gai,j .

6) The DDH assumption.

The DDH assumption asserts that for any ppt ad-
versary A, and for any constant c,

|Pr[A(ga, gb, gab) = 1]− Pr[A(ga, gb, gc) = 1]| 6 1/nc

where the probabilities are over a, b, c ← Zq and the
randomness of A.

The matrix form of the DDH assumption, which is
equivalent to the standard form of the DDH assump-
tion, asserts that it is hard to distinguish between gA,
where A is a random rank-n matrix, and gB, where
B is a random rank-1 matrix, and where q ≈ 2λ and
λ is the security parameter.

7) The construction.

Consider the family F which is associated with
two seed generation algorithms: the lossy algorithm
Genloss and the injective algorithm Geninj. These al-
gorithms take as input a security parameter 1λ and
they choose a random safe prime p ∈ [2λ−1, 2λ]; i.e., a
prime p such that q = p−1

2 is also a prime.9 These al-
9We rely here on the assumption that the safe primes are

dense. Alternatively, one can think of these algorithms as non-
uniform algorithms, where the safe prime p is hard-wired into
the seed generation circuit, in which case we only need to as-
sume that there exists a safe prime in the range [2λ−1, 2λ].
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gorithms also choose a quadratic-residue g ∈ Z∗p of or-
der q, by simply choosing any element h ∈ Z∗p\{1,−1}
and setting g = h2. Notice that the group Z∗p is of or-
der p− 1 = 2q. The fact that q is prime implies that
each group element is of order 1,2,q, or 2q, and hence
all the quadratic residues are of order 1 or q. Thus,
all the quadratic residues, except the unit element 1,
have order q.

The lossy seed generation algorithm Genloss gen-
erates a random rank-1 matrix A ∈ Zn×n

q and out-
puts the seed s = gA. The injective seed generation
algorithm Geninj generates a random rank-n matrix
A ∈ Zn×n

q and outputs the seed s = gA.

The function fgA takes as input x ∈ Zn
q and com-

putes gAx. Note that this output y = (y1, . . . , yn) is
in (Z∗p)n. In order to map the output y to Zn

q , we sim-
ply output a square-root of each yi. Note that since p
is a prime and each yi is a quadratic residue, each yi

has exactly 2 square-roots ωi and p−ωi. The function
fgA(x) will output for each coordinate i, the smaller
square-root among the two, and thus all the square-
roots will be in the set {1, . . . , p−1

2 }, and hence the
output can be interpreted as being in Zn

q , as desired.

The properties we require are summarized in the
following theorems. The first uses the standard DDH
assumption required for Theorem 4.1 and Lemma 4.3,
and the second makes the stronger assumption re-
quired for Theorem 4.2.

Theorem B.1. Suppose that for every ppt algorithm
A and for every constant C we have

|Pr[A(ga, gbgab) = 1]− Pr[A(ga, gbgc) = 1]| < 1/nC

where a, b, c ← Zq. Then the construction yields an
ω = n log q − log q lossy function family which is an
α = log q + 2 log2 λ computational extractor.

Theorem B.2. Fix any δ ∈ (0, 1). Suppose that for
every ppt algorithm A we have

|Pr[A(ga, gbgab) = 1]− Pr[A(ga, gbgc) = 1]| < 1/2nδ

where a, b, c ← Zq. Then the construction yields an
ω = n log q − log q lossy function family which is an
α = log q + 2 log2 λ computational extractor, where
the adversary can distinguish between a random lossy
function and a random injective one with probability
at most poly(λ)/2nδ

.

The proof of these theorems is straightforward.
Note that if A is rank-1, then the value fgA(x) loses
all the information about x except log q bits. On the

other hand, if A is rank-n, then the function fgA is
injective. Moreover, the matrix form of the DDH as-
sumption, immediately implies that it is hard to dis-
tinguish between a random lossy function and a ran-
dom injective function. Therefore, the family F is an
ω-lossy function family, with ω = n log q− log q. Tak-
ing q = 2nε

, we get ω = n1+ε − nε, where n1+ε is the
input length.

Moreover, the leftover hash-lemma, together with
the DDH assumption, implies that F is a (strong) α-
computational extractor, for α = log q+2 log2 λ. This
is the case, since the leftover hash lemma10 implies
that for any random variable in Zn

q with min-entropy
log q + 2 log2 λ,

(r, rx (mod q)) ≈ (r, Uq).

This, together with the DDH assumption, implies that

(gA, gAx) ≈ (gA, gu),

as desired.

10The leftover hash lemma asserts that for any random vari-
able X over a set D, and for any 2-universal hash function H :
S ×D → {0, 1}m, if X has min-entropy at least m + 2 log(1/ε)
then ∆(S, (H(S, X)), (S, U)) 6 ε, where ∆(·, ·) is the statistical
distance.
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