
On the Complexity of Real Functions

Mark Braverman1

Department of Computer Science
University of Toronto

mbraverm@cs.toronto.edu

Abstract

We establish a new connection between the two most
common traditions in the theory of real computation, the
Blum-Shub-Smale model and the Computable Analysis ap-
proach. We then use the connection to develop a notion
of computability and complexity of functions over the re-
als that can be viewed as an extension of both models. We
argue that this notion is very natural when one tries to de-
termine just how “difficult” a certain function is for a very
rich class of functions.

1 Introduction

Questions of computability and complexity over the re-
als are of extreme importance for understanding the connec-
tions between nature and computations. Assessing the pos-
sibilities of scientific computing in simulating and predict-
ing natural processes depends on an agreed upon and well
studied notion of “real computation”. Addressing issues of
physics and the Church-Turing Thesis also requires a strong
notion of computability over continuous spaces [23].

In the discrete setting, where the objects are from
{0, 1}∗, the concepts of computability and complexity are
very well studied. There are different approaches that have
been proved to yield equivalent definitions of computabil-
ity and (almost) equivalent definitions of complexity. From
the Formal Logic point of view we have the notion of re-
cursiveness, from Computational Complexity we have the
notion of a Turing Machine, and modeling the usual com-
puter yields the notion of abstract RAM. All these converge
to the same well accepted concept of computability.

In the continuous setting, where the objects are numbers
in R, the situation is far less clear. Real Computation has
been studied since Turing’s original 1936 paper [21], where
he introduced the Turing Machine. In that paper he dealt

1Research is partially supported by an NSERC postgraduate scholar-
ship

with the computability notion of a single real number. To-
day, we still do not have a unified and widely accepted no-
tion of real computability and complexity.

Consider the two simplest objects over Rn: real sets and
real functions. Several different approaches to the com-
putability of these objects have been proposed over the last
seven decades. Unlike the discrete case, most approaches
deal with computability of functions before the decidability
of sets. In the current paper we consider the two approaches
that are most common today: the tradition of Computable
Analysis – the “bit model”, and the Blum-Shub-Smale ap-
proach. These two approaches have been developed to cap-
ture different aspects of real computation, and in general are
not equivalent.

The bit-model is very natural as a model for scientific
computing when continuous functions on compact domains
are involved. In particular, the “calculator” functions, such
as

√
x, sinx and log x are bit-computable, at least on some

properly chosen domains. None of these functions are com-
putable in the BSS model, because computability in the BSS
model requires the function to have a very special algebraic
structure (essentially being piecewise-rational). This makes
the BSS notion inapplicable to scientific computing unless
some modifications are made. The BSS model mimics some
aspects of the actual way numerical analysts think about
problems, and in fact [4] contains many strong results on
solving fundamental numerical problems in algebra, such
as finding roots of a polynomial. The model’s disadvan-
tage is the difficulty in interpreting negative results. The
function ex and its graph are not BSS computable, and yet
we can easily compute the exponential function and plot its
graph. Modifications that can be made to the model to deal
with these problems have been discussed in [20]. To our
knowledge, these modifications have not been formalized.

On the other hand, there are very natural and simple
functions that are BSS computable but not bit-computable.
The simplest step function χ[0,∞) is an example.

In the set setting, the models also often give fundamen-
tally different answers to questions of computability. Con-
sider, for example, the Koch snowflake K, the Julia set

J = Jz2+1/4, and the Mandelbrot set M . In the BSS model
none of these sets are computable (see [4]). In the bit model,
K is very easy to draw and is computable, J is computable,
although not as easily as K [3], and the question of whether
M is computable is open and depends on some deep con-
jectures from complex dynamics [14]. For most “common”
sets BSS is a more restrictive model, but this is not always
the case, as demonstrated in section 3.2.

We propose three simple natural modifications to the
BSS model. Firstly, we allow the machines to use only com-
putable constants. This amounts to working on a smaller
field of the computable reals. Secondly, we allow the ma-
chines to make some errors. This has been done infor-
mally before by analyzing the “error+condition number” of
a problem in the BSS model. Thirdly, we require an a priori
estimate on the running time given as a function of the error
parameter ε. In section 3.2 we present an example show-
ing the importance of this condition. We show that under
these modifications the BSS model becomes equivalent to
the bit-model for sets. This involves simulating an infinite-
precision machine with a finite precision one. It can only be
done symbolically using the algebraic structure of the ma-
chine’s constants and Q, followed by a general quantifier
elimination over R.

Figure 1. The sets K (left), J (center), and M
(right)

The primary goals of this paper are:

• to show that under the reasonable modifications men-
tioned above, the two models become computationally
equivalent for sets;

• to propose a new notion of computability for functions
which extends both models, and takes advantage of
some positive features in both; and

• based on the above, to propose the “right” notion of
computational complexity for discontinuous functions,
extending naturally from the continuous case.

This gives us the “right” notion of complexity for func-
tions for which no such notion previously existed. For ex-
ample, the 2-valued function √ : C → C, as well as its
single-valued branches defined on subsets of C.

The paper is organized as follows. In Section 2 we dis-
cuss the bit model, and present some old and some new re-
sults. In Section 3 we discuss the BSS model and possible
modifications to it. In Section 4 we propose a new com-
putability and complexity definition for some discontinuous
and multi-valued functions.

2 The Bit Model

2.1 The Model of Computation

The computability of functions in the bit model as we
know it today was first proposed by Grzegorczyk [13] and
Lacombe [16]. It has since been developed and generalized.
More recent references on the subject include [15], [18],
and [22].

The basic model of computation here is an oracle Turing
Machine. Denote by D = { k

2� : k ∈ N, � ∈ N} the
set of the dyadic numbers. These are the rationals that have
a finite binary expansion. An oracle for a number x is a
function φ : N → D such that |φ(n)−x| < 2−n. The oracle
terminology is just a natural way to separate the complexity
of computing x from the complexity of computing on x as
a parameter. For most purposes one can think of the oracle
φ for x as an infinite tape containing the binary expansion
of x.

Consider a function f : R → R. In plain language,
a program M computing f would output a good approx-
imation of f(x), provided approximations of the input x.
More formally, the oracle machine Mφ(n) outputs a 2−n-
approximation of f(x) for any valid oracle φ for x. The
definition extends naturally to a function f : Rk → R�.
Here M = Mφ1,φ2,...,φk(n) is allowed to query each of
the k parameters with an arbitrarily good precision and is
required to output the � values of f with precision 2−n.

2.2 Basic Properties and Examples

One of the main properties of computable functions is
that they are continuous. For a computable f : R → R,
the machine Mφ

f (n) can query the input x via φ with only
finite level of precision before it outputs an approximation
q of f(x). This means that q should be a good approxima-
tion of f(x′) for all x′ in some small neighborhood of x.
Thus f(x′) should be close to f(x) whenever x′ is close
enough to x. A formal proof can be found in most standard
references, e.g. in [22].

The computable ⇒ continuous property implies that
even the simplest discontinuous function, the step function

s0(x) =
{

0 x < 0
1 x ≥ 0 (1)

2

is not computable under this definition. This is in contrary
to the intuition that s0 must be a “simple” function. One
could also argue that some physical systems, e.g. quantum
energy levels, are best described using step functions and
other simple discontinuous functions. One of the goals of
the present work is to develop notions which deal with this
problem.

We recall the classical definition of computable real
numbers, introduced by Turing in [21]. Informally, this def-
inition says that a real number x is computable if we can
compute arbitrarily good approximations of x.

Definition 1 A number x ∈ R is computable if and only if a
representation φ of x as described above can be computed.

A constant function f(x) = a is computable if and only
if the number a is computable. Most “standard” continuous
functions are computable in this model. For instance, the
exponential function f(x) = ex is computable on R using
the Taylor series expansion of ex =

∑∞
k=0

xk

k! . It is not hard
to estimate the number of terms and the precision of x we
need to consider in order to get a 2−n-approximation of ex.

Denote by C the set of computable real numbers. Then
C is closed under applications of any computable functions.
In particular C is a field. Using the convergence of the New-
ton method for approximating roots of polynomials one sees
that C + iC ⊂ C is an algebraically closed field.

The time complexity Tf (n) for a function f is the worst-
case time complexity for computing a 2−n-approximation
of f(x) given an oracle φ for x. We charge m time units for
querying φ(m). Note that this definition is completely in
the classical setting, and all the usual complexity function
classes are defined here.

For continuous functions, the complexity notion backs
our intuitive perception of “hard” vs “easy” functions. For
example, all the continuous “calculator” functions are com-
putable in time not exceeding O(n3).

2.3 Computability and Complexity of Real Sets

Definitions of effective subsets of Rn based on the con-
cept of computability have been proposed as early as the
mid 50’s [17]. We refer the reader to [10] and [22] for a
more detailed discussion. By “computing” a set S, we mean
generating increasingly precise “images” of S. We restrict
our attention to bounded subsets of Rn.

Consider the two-dimensional case, which is closely re-
lated to computer graphics. Intuitively, in this case, the set
S is computable if we can draw arbitrarily good “zoom-ins”
into it. One can view a 2−n-precise image of S on a screen
as a collection of radius-2−n pixels such that the following
two conditions are fulfilled:

1. If a pixel contains a point from S, then it is colored
black. This ensured that the entire set appears on the
screen.

2. If a pixel is far (say 2−n-far) from S, then it is colored
white. This ensures that the picture is a faithful image
of S.

We can take the pixels to be balls of radius 2−n with a
dyadic center d ∈ Dn. Formally,

Definition 2 We say that a bounded set S in Rn is bit-
computable, if there is a machine M(d, n) computing a
function from the family

f(d, n) =

1 if B(d, 2−n) ∩ S �= ∅
0 if B(d, 2 · 2−n) ∩ S = ∅
0 or 1 otherwise

(2)

On Fig. 2 we see some sample values of the function f .
It should be noted that the definition remains the same if
we take square pixels instead of the round ones. It is also
unchanged if we replace the ratio between the inner and the
outer radius with some α > 1 instead of 2.

Figure 2. Sample values of f . The radius of
the inner circle is 2−n.

The time complexity TS(n) is defined as the worst-case
running time of a machine M(d, n) computing a function
from the family (2). Low time complexity means that it is
easy to draw deep zoom-ins of the set S. We say that S is
poly-time computable if TS(n) < p(n) for some polyno-
mial p.

To see why this is the “right” definition, consider the
two-dimensional case. Suppose we are trying to draw S
on a computer screen which has a 1000 × 1000 pixel res-
olution. A 2−n-resolution picture of S has O(22n) pixels
of size 2−n, and thus would take time O(TS(n) · 22n) to
compute. This quantity is exponential in n, even if TS(n)

3

is bounded by a polynomial. But we are drawing S on
a finite-resolution display, and we will only need to draw
1000 · 1000 = 106 pixels. Thus the running time would be
O(106 · TS(n)) = O(TS(n)). This running time is polyno-
mial in n if and only if TS(n) is polynomial. Hence TS(n)
reflects the ‘true’ cost of zooming into S.

So far, one might have been left with the impression that
the computability definition above is not very robust. In
fact, on the contrary, it is equivalent to several other rea-
sonable definitions. For example, S is computable if and
only if the distance function, dS(x) = infy∈S |x − y|, is
computable.

We now present a more subtle equivalent definition. This
definition was first introduced by Chow and Ko in [12] un-
der the name of strong recognizability. It wasn’t known at
the time that this definition is, in fact, equivalent to the usual
bit-computability definition (Definition 2), as we will show
below.

The idea of the definition is to relax the conditions of
Definition 2. We are given a point x as an oracle to Mφ(n),
and we must output 1 if x ∈ S and 0 if x is 2−n-far from S.
Formally (renaming the concept to avoid confusion),

Definition 3 [12] We say that a set S is weakly computable
if there is an oracle Turing Machine Mφ(n) such that if φ
represents a real number x, then the output of Mφ(n) is

Mφ(n) =

1 if x ∈ S
0 if B(x, 2−n) ∩ S = ∅
0 or 1 otherwise

(3)

This definition is obviously weaker than the standard
one, because we can output whatever answer we want if
x /∈ S is very close to S. On the other hand, if we try to use
a “weak computer” for S to draw S by running it on some
grid, we might be left with an empty picture. This occurs
especially in the cases where S is a curve that contains none
of the grid points.

We can prove that, despite the apparent weakness of the
weak definition, it is equivalent to the standard bit com-
putability. The construction uses the fact that the weak com-
putation must terminate on every input x regardless of the
valid oracle φ for x. Due to space constraints, we only give
a sketch of the proof here. The complete proof can be found
in [11].

Theorem 4 A set is bit-computable if and only if it is
weakly computable.

Proof Outline: Obviously, the “hard” direction is to
show that every weakly computable set is, in fact, bit-
computable. To simplify matters, suppose that the set S
is a one-dimensional set. We assume that S is weakly com-
putable, and want to show that it is bit-computable.

We are given a point d in D, and n > 0, and want to
return 1 if (d − 2−n, d + 2−n) ∩ S �= ∅ and 0 if (d − 2 ·
2−n, d + 2 · 2−n) ∩ S = ∅.

We consider the infinite tree T of all the oracles for all
the points in (d − 2−n, d + 2−n). On Fig. 3, the first three
levels of T are presented for d = 1

2 and n = 1 (all the
numbers are written in binary). Each infinite path in T rep-
resents a real number in the interval we are interested in.
For each real x in the interval, there is a path converging to
it. In fact, there is usually more than one such path.

Figure 3. The first three levels of the tree T

We simulate the run of the weak machine Mφ(n). The
goal is to make the simulation for all the real points in the
interval (d − 2−n, d + 2−n) simultaneously.

If the machine asks for x with precision 2−m, m < n,
we respond with d as the approximation. This is a valid
oracle value for any x in the interval.

If m ≥ n we consider all the possible descendants of d
on the level with m + 1-bit long numbers, and create a sep-
arate computation for each of them (thus creating 3m−n+1

computations). Consider one of the copies and denote the
path leading to the selected vertex on level m + 1 by p. If
we are now asked about φ(r) for some r < m + 1, we re-
turn the value of p(r + 1) consistent with the current path.
Otherwise, we again consider all possible descendants of
p(m+1) on level r+1, and split the computation into 3r−m

computations. We continue this process until all computa-
tions terminate.

If either of the computations returns 1, we return 1 for
the bit-computation; otherwise we return 0. We first show
that the computation always terminates.

Suppose that the computation does not terminate. The
entire computation can be viewed as a tree where the nodes

4

are the subcomputations described above and a computation
Ci is the parent of the 3s computations it launches. If the
entire computation does not terminate, then there are two
possibilities: either one of the computations C ′ fails to ter-
minate without calling to subcomputations, or the tree of all
the computations to be performed is an infinite tree.

In the first case the points represented by the oracle
leading to C ′ would cause Mφ(n) to run forever. In the
second case, by König’s lemma, there must be an infinite
branch in the computations tree. Denote the branch by
C1, C2, C3, That is, C1 calls C2, C2 calls C3 etc. Note
that each Ci works with a path pi of T and pi+1 strictly
extends pi for each i, hence the infinite sequence of Ci cor-
responds to an infinite path p in T . The path converges to
a real number x ∈ [0, 1], and p gives rise to an oracle φ
for x. By the construction, the sequence of C1, C2, C3, . . .
simulates the computation of Mφ(n). Hence Mφ(n) does
not terminate, contradiction. This shows that the algorithm
terminates. Note that for the proof to work we need the fact
that every Cauchy sequence in D converges to a limit in our
domain R.

For the correctness we see that if there is an x ∈ S in the
interval, then there is an oracle φ for x which corresponds to
an infinite path in T . The computation branch correspond-
ing to this path will return 1, and the algorithm will output
1. If, on the other hand, x is far from S, then every branch
in the computation corresponds to a point which is at least
2−n-far from S, and all of them will return 0, and the algo-
rithm outputs 0 in this case.

A version of the following theorem has been first proved
in [24], (see also [9]). Theorem 4 allows us to give a simple
proof of it by showing that the graph Γf is weakly com-
putable. The simplified proof can be found in [11].

Theorem 5 Suppose D is a computable closed and
bounded set, and f is continuous on D. Then f is com-
putable if and only if its graph Γf = {(x, f(x)) : x ∈ D}
is computable.

3 The BSS Model and its Modifications

3.1 The Model

The BSS model is quite different from the bit model of
computability. Like the bit model, it also extends the stan-
dard Turing machines to deal with the continuous reality.
In the bit model the extension is through application of
the standard machine to continuous problems using oracles
and naming systems for continuous objects (cf. [22]). The
BSS approach extends the model of computation itself. We
present here an informal description of the model, which is
equivalent to a formal one, but is simpler to comprehend for
a reader who is new to the subject.

The BSS model in general is formulated for computa-
tion over an arbitrary ring or field R (for our purposes one
can take R = R or R = C). The machines in this model
are allowed to store an entire element of R in one mem-
ory cell. The operations the machine is allowed to perform
on numbers are (i) the ring operations (+, −, ·, and ÷ if
R is a field); and (ii) branching conditioned on exact com-
parisons between numbers (= and <, ≤, if R is ordered).
Initially, the program is allowed to have only some finite
number of constants from R. A machine computes a func-
tion f : Rk → R� on a domain D ⊂ Rk, if on an input
x ∈ D, it outputs f(x) ∈ R�. A machine decides a set
S ⊂ Rn if it computes the characteristic function χS(x) on
Rn. If one takes R = Z2 (or any other finite ring), the BSS
model becomes equivalent to the standard (discrete) Turing
Machine.

The BSS machines are closely related to the correspond-
ing arithmetic circuits over R, just as ordinary Turing Ma-
chines correspond to boolean circuits.

3.2 Examples of BSS Computable and Uncom-
putable Sets

A big family of examples of BSS computable sets are the
semi-algebraic sets. In particular, any singleton S = {c},
any line segment and any ball in Rn is BSS computable.
Note that {c} as well as the constant function f(x) = c
are computable, regardless of whether the number c can be
actually approximated or not. Unlike the bit model, in the
BSS model the step function s0(x) is easily computable in
constant time.

On the other hand, as we have mentioned in the introduc-
tion, simple functions and sets that lack the specific alge-
braic structure are not BSS computable. Examples of those
include the functions

√
x, sinx and log x, and sets such as

Koch’s snowflake K and the graph of the exponential func-
tion ex (cf. [8]). This is caused by the advantage given to
the algebraic operations (+, −, · and ÷) in the BSS model.

We will now present a somewhat more subtle example
of a BSS computable set which is not bit-computable. It
will be useful later in the discussion. First, let R(x, y)
be a computable (binary) predicate such that the predicate
H(x) = ∃y R(x, y) is uncomputable and if H(x) holds,
then the y satisfying R(x, y) is unique. One can take x to
be the encoding of a Turing machine, and R(x, y) = “the
machine encoded by x halts after exactly y steps”. Then
R(x, y) is computable by a simple simulation, while H(x)
is the halting problem, which is undecidable.

We construct the following closed set C0 ⊂ [0, 1]×[0, 1].
Denote Ii = [1

i+1 , 1
i] for i = 1, 2, Then [0, 1] =

5

Figure 4. A BSS computable set C0 one can-
not draw.

∪∞
i=1Ii ∪ {0}. Define

C0 = ({0} × [0, 1])
⋃

 ⋃
R(i,j)=1

Ii × Ij

 .

It is not hard to see that C0 is closed. There are no accu-
mulation points on (0, 1] × {0} because for each value of i
there is at most one value of j such that R(i, j) = 1. See
Fig. 4 for a schematic construction of C0.

C0 is BSS computable. We first check whether a given
point (x, y) is on one of the axes. If it isn’t, we can localize
the rectangle Ii,j in which (x, y) lies, and output R(i, j).

Observe that one cannot draw a good image of the set C0.
In fact, in order to decide whether to put a pixel in a small

neighborhood of the point
(

2i+1
i(i+1) , 0

)
, the middle of the

interval Ii on the x-axis, one needs to essentially compute
H(i), which is impossible.

3.3 Possible Modifications to the BSS Model

In this section we discuss possible modifications to the
BSS models which address some issues raised in the pre-
vious section. Modifications to the model have been pro-
posed in [6, 7] leading to a notion of “feasible real RAM”
which is essentially equivalent to the bit-computability. The
main idea there was, that exact comparisons are not possi-
ble on real-life devices, and should not be permitted in the
model. We argue that this is not always the case. From the
practical standpoint, some physical and other natural sys-
tems are best described with discontinuous functions (e.g.

“switch on/off”). From the theoretical point of view, this
restriction bars us from classifying discontinuous and multi-
valued functions. The simple step function, and a func-
tion solving the halting problem fall into the same “uncom-
putable” category.

3.3.1 Uncomputable Constants.

The first concern to address is the use of uncomputable
numbers. It is unreasonable to say that a function f(x) = a,
where a is a constant encoding the halting problem is com-
putable. The simple solution is to restrict the BSS machines
to use only computable constants.

Recall that the computable numbers, which we denote
by C, are the numbers that can be approximated arbitrarily
well on a computer. C is a countable real closed field, and
that C + iC ⊂ C is algebraically closed. Thus, it makes
sense to discuss BSS machines over C rather than on the
entire R. To emphasize the field C we are working with, we
will denote this model by BSSC . It now follows easily that
simple geometric objects, such as singletons, line segments
and balls are BSSC-computable if and only if they are bit-
computable.

3.3.2 Computation Errors

. The next possible modification addresses the problem
of the BSS uncomputability of functions such as ex. The
BSS model is in part based on the fact that real-life com-
puters usually use the four arithmetic operations as a base
to performing real computations. ex =

∑∞
n=0

xn

n! can be
viewed as an infinite-degree polynomial, and is approxi-
mated arbitrarily well with the finite degree polynomials
pn(x) =

∑n
i=0

xi

i! . In fact, real-life programs never com-
pute ex, but only pn(x) with some suitably chosen n. This
can be done using only the four arithmetic operations.

We further modify BSSC by allowing the machines to
err within a given precision ε. We denote this model by
BSSε

C . In this model, a BSS machine M(x, ε) is said to
compute f(x), if on an input (x, ε), ε > 0, it outputs f(x)
with an error of at most ε, and using only computable con-
stants. Note that the simple step function s0(x), as well
as any other BSSC computable functions, is computable in
BSSε

C .
One can now define the BSSε

C computability of sets in a
natural way. A bounded set S is BSSε

C-computable, if there
is a BSS machine M(x, ε) which uses only computable
constants, and on input (x, ε) it outputs 1 if x ∈ S and 0
if d(x, S) > ε. With this definition, the graph of ex be-
comes computable. The sets K and J mentioned in the
introduction also become computable.

It should be noted that if we drop the requirement of us-
ing only computable numbers, all the bounded sets are eas-
ily seen to be computable. It is not hard to encode all the

6

“pictures” of any bounded set S into one (possibly uncom-
putable) number c. In other words, all the sets are com-
putable in BSSε.

3.3.3 Unbounded Computation Branches.

The third modification addresses the problem highlighted
by the example C0 on Fig. 4. The problem is the excessive
power the BSS model gets from the possibility of having
arbitrarily long computation paths (as it happened in the ex-
ample above).

In the case of “simple” computations, such as ex, or its
graph, we can easily estimate the number of steps the ma-
chine would have to perform as a function of ε. We include
this condition as an additional restriction on the BSSε

C ma-
chines.

We say that a function (or a set) is BSSε,b
C computable,

if it is BSSε
C computable by a machine M , and the running

time of M can be bounded by τ
(⌊

1
ε

⌋)
for some integer

computable function τ : N → N. We say that τ(2n) is the
time complexity of the set.

Under this restriction the set C0 on Fig. 4 is not com-
putable, while the function ex on [0, 1], the graph of ex and
the step function s0(x) are computable. Other “calculator”
functions, such as

√
x, sinx and log x also become com-

putable. As before, if we allow the use of uncomputable
constants, all the sets become computable.

The restriction guarantees that a computation with any
finite precision has a branching tree of a computable finite
size. Note that the machine computing C0 has an infinite
branching tree regardless of the precision: the time it takes
to localize x > 0 into an interval [1/(n + 1), 1/n] grows
with n, regardless of the precision we are computing with.

We summarize the modifications to the BSS model in the
following diagram:

BSSC ⊂ BSSε
C ⊃ BSSε,b

C
(C0 comp., (C0 comp., (C0 not comp.,

ex not comp.) ex comp.) ex comp.)
∩ ∩ ∩

BSS ⊂ BSSε ⊃ BSSε,b

(C0 comp., (everything (everything
ex not comp.) is comp.) is comp.)

We will now show that BSSε,b
C -computability is equiva-

lent to bit computability for bounded sets. Note that they are
still different for functions, since the step function s0(x) is
BSSε,b

C -computable, but not bit-computable. In Section 4
we will connect BSSε,b

C function computability to bit com-
putability.

3.4 Computability of sets in BSSε,b
C

We prove the following theorem. Due to space con-
straints we only outline most of the proof here, leaving some
details out. The complete proof can be found in [11].

Theorem 6 Let S ⊂ Rk be a bounded set. Then S is
BSSε,b

C -computable if and only if it is bit-computable.

Proof Outline: S is bit-computable ⇒ S is BSSε,b
C -

computable. This is the easier direction. A BSS machine
over any R is more general than a regular Turing Machine,
and it can simulate the bit machine computing S.

S is BSSε,b
C -computable ⇒ S is bit-computable. This

is a more involved direction. The reduction we will give
is not uniform in S. It cannot be uniform due to the fact
that BSSε,b

C uses arbitrary computable constants. Even the
simplest questions, such as “a = b?”, are not decidable for
arbitrary computable reals a and b presented by Turing ma-
chines computing them. Denote the BSSε,b

C machine com-
puting S by M(x, ε).

The nonuniform information needed. Suppose that
the BSS machine M uses � constants a1, a2, . . . , a� ∈ R.
We would need the following algebraic information about
a1, . . . , a�, in addition to the Turing machines approximat-
ing them:

1. The algebraic degree di of ai over the field
Q(a1, . . . , ai−1), and

2. if this algebraic degree is finite (i.e. ai is algebraic over
Q(a1, . . . , ai−1)), the minimal polynomial pi(x) ∈
Q(a1, . . . , ai−1)[x] of degree di with leading coeffi-
cient 1, such that pi(ai) = 0. pi is presented symbol-
ically, with non leading coefficients given as rational
functions with non-zero denominators.

The next two lemmas show that the nonuniform information
above suffices to decide any polynomial relation.

Lemma 7 Provided the nonuniform information as
above, for any symbolic polynomial p(x1, x2, . . . , x�)
∈ Q[x1, x2, . . . , x�] we can check whether
p(a1, a2, . . . , a�) = 0.

Proof Outline: By induction on �. If a� is transcenden-
tal over Q(a1, a2, . . . , a�−1), the equation becomes a set of
dega�

p equations in a1, a2, . . ., a�−1, which we solve by
the induction hypothesis.

If a� is algebraic over Q(a1, a2, . . . , a�−1), we use the
non-uniform information to reduce the degree of p in a�

below d�. Then the equation becomes a set of at most d�

equations in a1, a2, . . ., a�−1.

7

Lemma 8 Provided the nonuniform information as above,
for any symbolic polynomial p(x1, . . . , x�) ∈ Q[x1, . . . , x�]
we can check whether p(a1, a2, . . . , a�) > 0.

Proof: By Lemma 7 we can first check whether
p(a1, a2, . . . , a�) = 0. If yes, we output ‘no’. Oth-
erwise, using increasingly good approximations, we will
eventually be able to tell whether p(a1, a2, . . . , a�) > 0 or
p(a1, a2, . . . , a�) < 0.

Given a dyadic d ∈ Dk and n ∈ N, we would like to
compute f(d, n) as in (2). In other words, we would like to
check whether d is 2−n-close or 2 · 2−n-far from S.

For the rest of the proof set ε = 2−n. We know there is a
computable bound on the running time of M(x, ε) in terms
of ε. We compute this bound B = B(ε). This means that
M(•, ε) can have at most 2B different computation paths.
Each potential path has an output (either 0 or 1), and a set of
rational constraints on the input x = (x1, . . . , xk) and the
constants a1, . . . , a� that ensure that this path is followed.
If the constraints are not satisfiable by any (x1, . . . , xk), it
means that the path is never actually followed. The rational
constraints can be rewritten as polynomial ones.

Choose some computation path γ on which M(•, ε) out-
puts 1. We denote the polynomial constraints to be satisfied
in order to follow γ by Cγ(x1, . . . , xk, a1, . . . , a�). We are
interested whether there is an x ∈ B(d, 2−n)∩S. In partic-
ular, we would like to know whether there is such an x that
is accepted by the path γ. This is stated by the following
quantified formula

fγ(a1, . . . , a�) = ∃x1, . . . , xk ((x1 − d1)2 + . . .

+(xk − dk)2 < 2−2n) ∧ Cγ(x1, . . . , xk, a1, . . . , a�).

Using a quantifier elimination algorithm, we can convert
fγ(a1, . . . , a�) into a quantifier-free formula gγ(a1, . . . , a�)
which has the same truth value. We then can use Lemmas
7 and 8 to decide whether gγ(a1, . . . , a�) is true or false
(which is the same as deciding fγ(a1, . . . , a�)). fγ has only
some constant number of existential quantifiers with no al-
ternations, hence the complexity of the quantifier elimina-
tion can be reduced to be exponential in k (and polynomial
in the other parameters). See [2] and [19] for the algorithms
and their analysis.

As an answer, we output the following

f(d, n) =
∨

γ is a 1-valued path of M(•, ε)
fγ(a1, . . . , a�).

(4)
As there are at most 2B such paths γ, the computation will
involve computing fγ at most 2B times.

Now, if there is an x in B(d, 2−n)∩S, it will satisfy fγx

in (4) for the corresponding path γx of M(x, ε). If there is
no x in B(d, 2 · 2−n) ∩ S, (4) can never be satisfied.

Remark: From the complexity point of view, even the
simplest simulation of BSS machines using Turing ma-
chines appears to be quite costly. In the case where the ma-
chine is an arithmetic straight line program a discussion on
the complexity of such a simulation can be found in [1].

4 Complexity of Real Functions

In this section we propose a new definition for the com-
putability and complexity of real functions, and establish its
connections with bit and BSS computability.

4.1 Computability of Real Functions

The main idea arises from the equivalence between the
function computability and the set computability in case of
a continuous function, which was established in Theorem 5.
We have a good notion of bit-computability for sets which
coincides with BSSε,b

C -computability. We use it to define a
computability notion for functions:

Definition 9 We say that a bounded real function f on a
bounded domain D is graph computable, if its graph Γf =
{(x, f(x)) : x ∈ D} is computable as a set.

By Theorem 5, Definition 9 coincides with the bit com-
putability definition in the case of continuous functions on
closed domains. In some sense, graph computability ex-
tending bit-computability for functions, is similar to the no-
tion of Lebesgue integral extending the Riemann integral.

BSSε,b
C -computable functions on “nice” domains have

BSSε,b
C -computable graphs. Here a “nice” domain is

bounded semi-algebraic and BSSC-computable, e.g. D =
[a1, b1]×[a2, b2]×. . .×[ak, bk] with computable endpoints.
It follows from Theorem 6 that these functions are graph
computable. So graph-computability extends the modified
BSS function computability on “nice” domains.

4.2 Complexity of Real Functions

By now we have established that graph computability is a
useful notion extending both bit computability and a natural
modified version of the BSS computability. Our next goal
is to give a reasonable definition for graph complexity of
real functions. Should we take the complexity of computing
Γf ? Or the complexity of weakly computing it? It turns
out that neither one extends the bit-complexity of f in the
continuous case. In fact, we have the following theorem.

Theorem 10 Let f : [0, 1]k → [0, 1]� be a continuous
function, with a polynomial modulus of continuity µ(n)
(|f(x)− f(y)| < 2−n whenever |x− y| < 2−µ(n)). Denote
the following properties:

8

(a) The graph Γf is poly-time computable as a set.
(b) f is a poly-time computable function.
(c) The graph Γf is weakly poly-time computable as a

set.
Then we have the following: (i) (a) ⇒ (c) and (b) ⇒

(c); (ii) (b) ⇒ (a) implies P = NP ; and (iii) (a) ⇒ (b)
(and also (c) ⇒ (b)), implies that integer factoring and
other one-way functions can be done in polynomial time.

We omit the proof of Theorem 10 here. It can be found
in [11]. Intuitively, when we compute y = f(x) according
to (b), we have access to an oracle for x, and need to output
an approximation of y. This corresponds to a computation
of Γf which is weak in x and strong in y. (a) is stronger
because it requires Γf to be strongly computable in both
coordinates, and (c) is weaker because it allows Γf to be
weakly computable in both coordinates. It is somewhat sur-
prising that for some technical reasons (a) does not imply
(b) in general.

What we need is a complexity notion that extends part
(b) in Theorem 10 to all graph-computable functions, i.e.
one that is weak in x and strong in y.

Recalling Definition 3 of weak computability we see that
x has to be given to the machine by an oracle. The computa-
tion should be strong in y, so we should be able to strongly
compute a vertical cross-section Am of the graph Γf . By
analogy with Definition 3, we must (i) always include f(x)
in Am, and (ii) Am must only contain images of points in
B(x, 2−m). Thus (viewing f(x) as a set which may contain
more than one point), we have

f(x) ⊂ Am ⊂ f
(
B(x, 2−m)

)
. (5)

The computation should be strong in y. Thus we should
compute the set Am in the sense of Definition 2. Given a
dyadic point d in the range space and a precision parameter
n, we must output an answer consistent with (5). If d is
2−n-close to some point in f(x), we must output 1. If d is
2·2−n-far from all points in f(B(x, 2−m)), we must output
0. Otherwise, we are in the gray area.

Formally, we arrive at the following definition.

Definition 11 We say that a bounded multi-valued function
f : D ⊂ Rk → R� for some bounded computable D is
graph-computable in time T (n,m) if there is an oracle
Turing machine Mφ(m, d, n) which, given an oracle φ for
x ∈ D, computes a function from the family

Mφ(m, d, n) = (6)

1, if |d − y| < 2−n for some y ∈ f(x)
0, if |d − y| ≥ 2 · 2−n for all y ∈ f (B(x, 2−m))
0 or 1 otherwise

and the computation time is bounded by T (m,n).

Examples: The step function s0 defined in (1) is now
computable in linear time. For an input x output Am = {0}
if x < −2−(m+1), output Am = {1} if x > 2−(m+1), and
Am = {0, 1} if −2−m < x < 2−m. Note that the overlaps
between the different possibilities ensure that we can always
follow at least one of them.

More generally, consider the complexity of χA for some
set A. On an input x we need to output one of the three
possible sets: {0}, {1} or {0, 1}. We must include 1 if x ∈
A, and must exclude it if x is 2−m-far from A. Similarly,
we must include 0 if x /∈ A, and must exclude it if x is
2−m-far from Ac. We see that the complexity of χA in this
case is roughly equal to the sum of the weak complexities
of A and Ac.

The two-valued function √ : C → C is computable
efficiently. On an input x, Am is a 2−m approximation of
{√x,−√

x}. Note that this set converges to the set {0} as
x → 0. Reasonable branches of √ , such as the standard

one (r · eiθ �→ √
r · eiθ/2, 0 ≤ θ < 2π), is also efficiently

computable under Definition 11.
To be considered the “right” complexity notion, Defini-

tion 11 has to be consistent with the previous definitions
of computability and complexity. First of all, a function is
computable according to it if and only if it is graph com-
putable. The proof uses Theorem 4 on the equivalence of
weak and regular bit-computability. It can be found in [11].

Theorem 12 A function f : D ⊂ Rk → R� for some
closed and bounded computable D is computable as per
Definition 11 if and only if its graph is computable (that is,
it is computable as per Definition 9).

Next, we see that this definition extends standard func-
tion complexity in the continuous case. In particular, if f
has a reasonably small modulus of continuity, it is bit-poly-
time computable if and only if it is graph-poly-time com-
putable.

Theorem 13 Let f : D → Rk be a continuous function,
where D ⊂ R� is bounded. Then the following holds:

1. If f is computable in time T (n) according to the
standard bit complexity definition, then it is graph-
computable in time T (n + 2) + O(n).

2. If f is graph-computable in time S(m,n), and the
modulus of continuity for f is a computable µ = µ(n)
(so that |f(x) − f(y)| < 2−n whenever |x − y| <
2−µ(n)), then f is computable in time O(n · S(µ(n +
2), n + 2)) according to the standard bit complexity
definition.

The harder part here is the second claim. It is true, be-
cause for m = µ(n + 2),

f(x) ∈ Am ⊂ f(B(x, 2−µ(n+2))) ⊂ B(f(x), 2−(n+2)).

9

Thus by approximating the set Am, we can approximate
f(x).

Theorems 12 and 13 show that graph complexity is the
natural complexity notion for graph computable functions.
It also extends the natural complexity definitions for other
extensions of the continuous functions. For example, the
piecewise continuous functions with finitely many com-
putable discontinuity points.

5 Closing Remarks

In Section 3 it has been shown that under some quite
natural modifications, the BSS model and the bit model are
equivalent for sets. While these modifications make sense
from the point of view of actual computations, some of the
merits of the BSS model are inevitably lost.

There are interesting complexity questions that can only
be formulated in the original model. For example, the ques-
tion of PR vs. NPR, and other questions regarding com-
plexity classes over R and C. Another example is the ques-
tion whether linear programming can be solved in polyno-
mial time using only exact arithmetic and branching on <
and =. Nonetheless, as we have seen above, modifications
are necessary when one considers the practical applications
of the model to computability.

In the functions case matters are more complicated. The
traditional recursive analysis approach seems to work quite
well in the case when the underlying functions are continu-
ous. In Section 4 the standard notion of function complexity
has been generalized to a richer class which includes some
discontinuous functions. This class might be even too rich
in some cases. The exact class of functions F to which the
notion should be applied depends on the specific applica-
tions of this notion.

Suggestions for a “second-generation BSS machine” in-
cluded incorporating errors and condition numbers into the
model [20]. It is possible that with the modifications both
approaches would converge to a common notion of real-
function computability, and maybe even complexity.

Acknowledgments
I would like to thank my graduate supervisor, prof.

Stephen Cook, for his insights and support during the prepa-
ration of this paper and for the many hours we spent dis-
cussing Real Computation.

I would like to thank prof. Toniann Pitassi, for her advice
during the preparation of this paper.

References

[1] E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. B.
Miltersen. On the complexity of numerical analysis. ECCC
report TR05-037, 2005.

[2] S. Basu, R. Pollack, and M. F. Roy. Algorithms in Real
Algebraic Geometry. Springer-Verlag, 2003.

[3] I. Binder, M. Braverman, and M. Yampolsky. Filled julia
sets with empty interior are computable. e-print, Oct. 2004.
math.DS/0410580.

[4] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and
Real Computation. Springer-Verlag, New York, 1998.

[5] L. Blum, M. Shub, and S. Smale. On a theory of
computation and complexity over the real numbers: NP-
completeness, recursive functions and universal machines.
Bulletin of the Amer. Math. Soc., 21:1–46, 1989.

[6] P. Boldi and S. Vigna. δ-uniform BSS machines. J. of Com-
plexity, 14:234–256, 1998.

[7] V. Brattka. Feasible real random access machines. J. of
Complexity, 14:490–526, 1998.

[8] V. Brattka. The emperor’s new recursiveness: The epigraph
of the exponential function in two models of computability.
In Masami Ito and Teruo Imaoka, editors, Words, Languages
& Combinatorics III, pages 63–72, 2003.

[9] V. Brattka. Plottable real number functions. In Marc Dau-
mas and et al., editors, RNC’5 Real Numbers and Comput-
ers, pages 13–30. INRIA, September 2003.

[10] V. Brattka and K. Weihrauch. Computability of subsets of
euclidean space I: Closed and compact subsets. Theoretical
Computer Science, 219:65–93, 1999.

[11] M. Braverman. On the complexity of real functions. e-print,
Feb. 2005. cs.CC/0502066.

[12] A. Chou and K. Ko. Computational complexity of two-
dimensional regions. SIAM J. Comput., 24:923–947, 1995.

[13] A. Grzegorczyk. Computable functionals. Fund. Math.,
42:168–202, 1955.

[14] P. Hertling. Is the Mandelbrot set computable? Math. Log.
Quart., 51(1):5–18, 2005.

[15] K. Ko. Complexity Theory of Real Functions. Birkhäuser,
Boston, 1991.

[16] D. Lacombe. Classes récursivement fermés et fonctions ma-
jorantes. C. R. Acad. Sci. Paris, 240:716–718, 1955.

[17] D. Lacombe. Les ensembles récursivement ouverts ou
fermés, et leurs applications à l’analyse récursive. C. R.
Acad. Sci. Paris, 246:28–31, 1958.

[18] M. B. Pour-El and R. J. I. Computability in Analysis and
Physics. Springer-Verlag, Berlin, 1989.

[19] J. Renegar. On the computational complexity and geometry
of the first order theory of the reals. J. of Symb. Comp.,
13:255–352, 1992.

[20] S. Smale. Complexity theory and numerical analysis. Acta
Numerica, 6:523–551, 1997.

[21] A. M. Turing. On computable numbers, with an application
to the entscheidungsproblem. Proceedings, London Mathe-
matical Society, pages 230–265, 1936.

[22] K. Weihrauch. Computable Analysis. Springer-Verlag,
Berlin, 2000.

[23] A. C. Yao. Classical physics and the church-turing thesis.
ECCC report TR02-062, 2002.

[24] Q. Zhou. Computable real-valued functions on recursive
open and closed subspaces of Rq . Math. Log. Quart.,
42:379–409, 1996.

10

