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Abstract. We show that termination of a simple class of linear loops
over the integers is decidable. Namely we show that termination of de-
terministic linear loops is decidable over the integers in the homogeneous
case, and over the rationals in the general case. This is done by analyz-
ing the powers of a matrix symbolically using its eigenvalues. Our results
generalize the work of Tiwari [Tiw04], where similar results were derived
for termination over the reals. We also gain some insights into termi-
nation of non-homogeneous integer programs, that are very common in
practice.

1 Introduction

Termination analysis is one of the building blocks of automated verification. For
a generic loop

while (conditions) { commands }
it is well known that the termination problem is undecidable in all but the most
simple cases. Even when all the conditions and updates are given as piecewise
linear functions, the problem of deciding termination of the loop remains unde-
cidable since such programs can naturally simulate counter machines [Tiw04],
and the problem of whether a counter machine terminates on all inputs is unde-
cidable [BBK+01].

In view of the undecidability mentioned above, the efforts on practical termi-
nation analysis of loops have been concentrated on partial decision procedures.
One approach is synthesizing a ranking function. Synthesis of ranking functions
has been studied in [CSS03,BMP05a,BMP05b]. In some cases, one can even find
a complete method for synthesis of linear ranking functions [PR04]. Even a com-
plete synthesis method, however, can only establish existence of a certain way
of proving termination, and not actually decide the termination problem itself.
It is not hard to construct an example of a program that terminates but has no
linear ranking function.

The termination problem appears to be much harder, and one can expect
it to be decidable only in the simplest cases. In [Tiw04] termination has been
shown to be decidable for loops of the form

while (Bx > b) { x← Ax + c }
? Partially supported by an NSERC postgraduate scholarship



where Bx > b represents a conjunction of linear inequalities over the state vari-
ables x, and x ← Ax + c represents a (deterministic) linear update of each
variable. The variables are interpreted over the reals IR, and there are no con-
straints on the initial conditions. Roughly speaking, [Tiw04] shows that only
the subspace corresponding to eigenvectors of A with positive real eigenvalues is
relevant to the termination problem. In the homogeneous case

while (Bx > 0) { x← Ax }
it is immediate to see that if there is an eigenvector v of A such that Av = λv,
λ > 0 and Bv > 0, then the loop is non-terminating on v. The decision procedure
depends on the fact that the inequality Bx > 0 is strict. More importantly, it
depends on the fact that the variables are interpreted over the reals. As the
following example illustrates, a program may be terminating over the integers,
but not over the reals.

Example 1. Consider the homogeneous loop

while (4x + y > 0)
{ (

x
y

)
←

(
−2 4

4 0

) (
x
y

) }
The matrix has two eigenvectors, (−1−

√
17, 4) and (−1+

√
17, 4) corresponding

to eigenvalues −1−
√

17 and −1 +
√

17, respectively.
The eigenvector (−1 +

√
17, 4) satisfies the loop condition, and corresponds

to a positive eigenvalue. Hence the loop does not terminate over IR. However, the
line (−1 +

√
17, 4)α does not contain any rational points, and the loop outside

this line is always dominated by the eigenvalue −1 −
√

17 < 0 that is bigger in
absolute value than the other eigenvalue. At the limit, the orbit of (x, y) will
alternate between the directions (−1 −

√
17, 4) and (1 +

√
17,−4). Hence the

loop terminates on all integers. �

The example highlights the difference between the integer and the real case.
In general, it is not unusual to have differences between hardness of decidability
of problems over the reals IR and problems over the integers ZZ. One notorious
example is quantifier elimination. Given a quantified formula

Q1x1Q2x2 . . . Qnxn f(x1, . . . , xn),

there is an algorithm to decide its validity over IR [Tar51], but not over ZZ. In
fact, by undecidability of Diophantine equations [Mat93], the formula above is
undecidable even in the case when Qi = ∃ for all i.

It has been conjectured in [Tiw04] that the termination of programs as above
is still decidable when interpreted over the integers. In this paper we prove the
following:

Theorem 1. Let A,Bs, Bw be rational matrices and bs, bw, c be rational vectors.
Then the termination problem of the loop

while (Bsx > bs) ∧ (Bwx ≥ bw) { x← Ax + c }
is decidable when the variables range over the reals IR or the rationals Q. It is
decidable over the integers ZZ in the homogeneous case when bs, bw, c = 0.
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Theorem 1 settles the termination problem over the rationals for a linear loop
with a deterministic update and no initial conditions in the most general form.
Using Lemma 4 on linear combinations of sums of powers of complex units, we
are able to deal with non-strict inequalities. Over the integers termination in the
non-homogeneous case remains an intriguing open problem. We will return to it
in Section 6.

In practice, the programs are usually specified over integer variables, and it
is encouraging to know that the termination of homogeneous loops as above is
still decidable in this setting. Most of the paper is dedicated to proving Theorem
1.
Acknowledgments: I would like to thank Marsha Chechik and Arie Gurfinkel
for encouraging me to work on the problem. I am also grateful to Arie Gurfinkel
for his many useful comment on preliminary versions of the paper. I would like
to thank Ilia Binder for our useful discussions on applying the ergodic theo-
rem. Finally, I would like to thank the anonymous referees for the many useful
suggestions for improvements of the paper.

2 Proof Outline of Theorem 1

The main part of the proof is in deciding termination over Q for homogeneous
programs (i.e. programs for which bs, bw, c = 0). Unlike the termination analysis
over IR [Tiw04], we cannot ignore the vectors corresponding to negative and
complex eigenvalues. As illustrated in the following example, it is possible that
there are no rational points on the non-terminating subspace S+ corresponding
to the positive eigenvalues of A, but there is a rational vector outside S+ very
close to it, and on which the loop is still non-terminating.

Example 2. Consider the loop

while (4x− 5y > 0)
{ (

x
y

)
←

(
2 4
4 0

) (
x
y

) }
The matrix has two eigenvectors, (1+

√
17, 4) and (1−

√
17, 4) corresponding to

eigenvalues 1+
√

17 and 1−
√

17, respectively. The only eigenvector in S+ is v1 =
(1 +

√
17, 4), which satisfies the loop condition, but contains no rational points.

However, the orbit of a rational perturbation q1 of v1 converges to the direction
of v1 at the limit. Hence it is possible to choose q1 that is a nonterminating
rational initial condition, and the loop is non-terminating over Q despite the
fact that there are no rational points in S+. The point q1 = (9, 7) is an example
of a specific such value. Note that

∣∣∣ 9
7 −

1+
√

17
4

∣∣∣ < 0.005, which means that q1 is
a good rational approximation of v1. �

We will see that the set N of real points for which the program is non-
terminating is a convex cone. Hence it has a dimension and a unique minimal
linear space Smin containing it. The rough outline of the procedure for finding
a rational point in N (i.e. in Qn ∩N) is as follows:
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Termination (loop P )
compute Smin

Qmin ← Smin ∩Qn

if Qmin = ∅
return terminating

if dim(Qmin) = dim(Smin)
return non-terminating

else
reduce the loop to a loop P ′ on the subspace Qmin

run Termination(P ′)

At each iteration, Smin is the current feasible real subspace, and Qmin its
rational subspace. We continuously update both until their dimensions match
or until Qmin becomes empty. If the dimensions match, we know that Qmin is
dense in N , and we can return non-terminating. If Qmin becomes empty, we can
return terminating. At each iteration we reduce the dimension of the loop by at
least 1, hence the algorithm terminates. The crucial step in the computation is
the ability to compute Smin at each step of the iteration.

Running the procedure on Example 1 above, we would obtain that Smin is
the one-dimensional space span{(−1 +

√
17, 4)}, and Qmin = {0}, thus out-

putting terminating. On the other hand, for Example 2 above we would obtain
Smin = IR2, and Qmin = Q2, thus dim(Qmin) = dim(Smin), and we output
non-terminating.

3 Preliminaries

3.1 Linear Algebra

We will see that symbolically powering the matrix A is an essential step in
deciding termination of the loop. If A is similar to some matrix D via A =
P−1DP then

An = (P−1DP )n = (P−1DP )(P−1DP ) . . . (P−1DP ) = P−1DnP.

Hence powering the matrix A is as hard as powering the matrix D. We would
like to make D as simple as possible. It is well known from linear algebra [HK71]
that any A can be transformed into Jordan canonical form:

Lemma 2 (Jordan canonical form). For any matrix A ∈ Cn×n there is a
matrix P , and a matrix D of the form D = Diag(J1, J2, . . . , JN ) with each block
Ji having the form

Ji =



λi 1 0 . . . 0
0 λi 1 . . . 0
...

...
...

. . .
...

0 0 0
. . . 1

0 0 0 . . . λi

 ,
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where λi is an eigenvalue of A and A = P−1DP . Moreover, if A is an alge-
braic matrix, then D and P are also algebraic matrices and their entries can be
computed from the entries of A.

Next, we explicitly write the n-th power of the matrix D. The formula can
be proved by induction on n.

Lemma 3 For a matrix D = Diag(J1, . . . , JN ) in Jordan canonical form, its
n-th power is given by Dn = Diag(Jn

1 , Jn
2 , . . . , Jn

N ) , where

Jn
i =



λn
i nλn−1

i

(
n
2

)
λn−2

i . . .

(
n

Ni − 1

)
λ

n−(Ni−1)
i

0 λn
i nλn−1

i . . .

(
n

Ni − 2

)
λ

n−(Ni−2)
i

...
...

. . . . . .
...

0 0
. . . λn

i nλn−1
i

0 0 . . . 0 λn
i


,

where Ni is the dimension of the block Ji, and
(

n
k

)
= 0 if n < k.

3.2 A Lemma about Complex Units

Let ζ 6= 1 be a complex number on the unit circle, that is, |ζ| = 1. It is easy to
see that the orbit ζ, ζ2, ζ3, . . . will visit the negative half of the complex plane
infinitely often. We need a generalization of this fact to a linear combination of
such ζ’s.

Lemma 4 Let ζ1, ζ2, . . . , ζm ∈ C be a collection of distinct complex numbers
such that |ζi| = 1 and ζi 6= 1 for all i. Let α1, α2, . . . , αm be any complex numbers.
Denote

zn = α1ζ
n
1 + α2ζ

n
2 + . . . + αmζn

m.

Then one of the following is true:

1. the real part Re(zn) = 0 for all n; or
2. there is a c < 0 such that Re(zn) < c for infinitely many n’s.

We will be interested in the case when zn ∈ IR are all reals. In this case we
have Re(zn) = zn for all n, and the lemma applies directly to zn.

Proof. Due to space constraints, we will only present a proof idea here. First of
all, we can write

yn = 2Re(zn) = zn + z̄n = α1ζ
n
1 + . . . + αmζn

m + ᾱ1ζ̄
n
1 + . . . + ᾱmζ̄n

m ∈ IR.

After collecting together terms where ζi = ζ̄j , we see that the claim for yn is
equivalent to the claim for the zn, but now yn ∈ IR for all n. Hence it suffices to
prove the lemma under the assumption zn ∈ IR. We actually show that if zn is
not syntactically 0, then the second possibility above holds.

The two key claims of the proof are that
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1. The cumulative sum of the zn is bounded from above:

∣∣∣∣∣
N∑

n=0

zn

∣∣∣∣∣ ≤ C1, where

C1 > 0 is some explicit constant.

2. The sum of absolute values |zn| is bounded from below:
N+m∑

n=N+1

|zn| > C2 for

each N for some explicit constant C2 > 0.

Both claims are not too hard to prove, and together they yield the statement of
the lemma: Choose an integer K such that K · C2 > 4C1. Then for any N we
have by the first claim

N+Km∑
n=N+1

zn =
N+Km∑

n=0

zn −
N∑

n=0

zn < 2C1.

On the other hand, by the second claim we have

N+Km∑
n=N+1

|zn| =
K−1∑
i=0

N+mi+m∑
n=N+mi+1

|zn| > K · C2 > 4C1.

These together imply that

N+Km∑
n=N+1, zn<0

zn < −C1.

Hence there is an n ∈ {N + 1, . . . , N + Km} such that zn < −C1/(Km).
Set c = −C1/(Km). We have just seen that there is a zn satisfying zn < c

among any Km consecutive elements. This completes the proof of Lemma 4.
Remark: It is also possible to give a less constructive proof of Lemma 4 using

ergodic theory. �

4 Termination over Q and IR in the Homogeneous Case

In this section we assume that the loop is homogeneous, that is c, bs, bw = 0. Let
N be the set of nonterminating points of the program over IRn. We are interested
in determining whether N and N ∩Qn are empty.

For a point z ∈ IRn we consider the evolution of the loop with initial variables
vector z. We denote the value of the variables after i iterations by z(i) = Aiz.
In particular z(0) = z. z ∈ N if and only if z(i) satisfies the loop conditions
Bsz(i) > 0 and Bwz(i) ≥ 0 for all i ≥ 0.

First, we note that N is a convex cone.

Lemma 5 Assuming N 6= ∅, N must be a convex cone. That is, for every
x, y ∈ N and λ > 0, λx ∈ N , and the line segment connecting x to y belongs to
N .

6



Proof. Since the loop is homogeneous, the execution on x will run for exactly
as long as the execution on λx. In particular if the loop does not terminate on
x, it will not terminate on λx. Suppose that initially z is on the line segment
connecting x with y. Then z(0) = z = αx + (1− α)y for some α ∈ [0, 1]. On the
n-th iteration we have

z(n) = αx(n) + (1− α)y(n),

is still on the line segment connecting x(n) with y(n), and

Bsz(n) = αBsx(n) + (1− α)Bsy(n) > 0,
Bwz(n) = αBwx(n) + (1− α)Bwy(n) ≥ 0,

because the loop does not terminate on both x and y. �

N is a convex body in IRn and as such, has a dimension dN , which is the
rank of the smallest subspace containing N . Determining the minimum linear
space Smin = span{N} containing N is central to the construction.

4.1 Finding the Minimum Space Smin ⊃ N

Intuition: N is a convex cone. If we consider N as a subset on Smin, we see that
it has an interior int(N), and for any point x in the interior small perturbations
x + εv of x remain in N if and only if v ∈ Smin. The v’s for which x + εv is in
N span Smin. We first find such an x, we call zmax, and then generate all the
small perturbations that leave zmax in N in order to get a linear basis for Smin.

We are interested in the behavior of the loop with initial condition z(0).
In particular, we would like to know whether z(i) = Aiz(0) always satisfies the
loop conditions. Since we know the Jordan canonical form of A, we can explicitly
write the while condition after i steps as{

BsA
iz(0) > 0

BwAiz(0) ≥ 0 ⇔
{

BsP
−1DiPz(0) > 0

BwP−1DiPz(0) ≥ 0 (1)

where D = PAP−1 = Diag(J1, . . . , JN ) is the Jordan canonical form of A.
Our next goal is to use (1) to write the conditions on z(i) in an explicit form.

Let 0 < λ1 < λ2 < . . . < λr be the absolute values of the eigenvalues of A
sorted in the increasing order. We only consider the nonzero eigenvalues here.
Let {ζij} be complex numbers on the unit circle, |ζij | = 1, and ζij 6= 1 such that
the eigenvalues of A are a subset of

{λ1, λ1ζ11, λ1ζ12, . . . , λ1ζ1m1 , λ2, λ2ζ21, λ2ζ22, . . . , λ2ζ2m2 , . . . ,

λr, λrζr1, λrζr2, . . . , λrζrmr
}.

The ζij are the arguments of the corresponding eigenvalues. By Lemma 3, sym-
bolically, Di is a linear combination of

{λi
1, λ

i
1ζ

i
11, λ

i
1ζ

i
12, . . . , λ

i
1ζ

i
1m1

, iλi−1
1 , iλi−1

1 ζi−1
11 , iλi−1

1 ζi−1
12 , . . . , iλi

1ζ
i−1
1m1

, . . . ,
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(
i

n1 − 1

)
λ

i−(n1−1)
1 ,

(
i

n1 − 1

)
λ

i−(n1−1)
1 ζ

i−(n1−1)
11 , . . . ,(

i
n1 − 1

)
λ

i−(n1−1)
1 ζ

i−(n1−1)
1m1

, λi
2, λ

i
2ζ

i
21, λ

i
2ζ

i
22, . . . , λ

i
2ζ

i
2m2

, . . .

λi
r, λ

i
rζ

i
r1, λ

i
rζ

i
r2, . . . , λ

i
rζ

i
rmr

, . . . ,

(
i

nr − 1

)
λi−(nr−1)

r ,(
i

nr − 1

)
λi−(nr−1)

r ζ
i−(nr−1)
r1 , . . . ,

(
i

nr − 1

)
λi−(nr−1)

r ζi−(nr−1)
rmr

}

Thus we can rewrite (1) as a set of conditions on the initial z(0) of the form

Condk(z(0), i) = λi
1(Ck11 + ζi

11Nk111 + ζi
12Nk112 + . . . + ζi

1m1
Nk11m1)z(0)+

iλi−1
1 (Ck12 + ζi−1

11 Nk121 + ζi−1
12 Nk122 + . . . + ζi−1

1m1
Nk12m1)z(0) + . . .+(

i
n1 − 1

)
λ

i−(n1−1)
1 (Ck1n1 + ζ

i−(n1−1)
11 Nk1n11 + ζ

i−(n1−1)
12 Nk1n12 + . . .+

ζ
i−(n1−1)
1m1

Nk1n1m1)z(0) + . . .+

λi
r(Ckr1 + ζi

r1Nkr11 + ζi
r2Nkr12 + . . . + ζi

rm1
Nkr1mr

)z(0)+

iλi−1
r (Ckr2 + ζi−1

r1 Nkr21 + ζi−1
r2 Nkr22 + . . . + ζi−1

rmr
Nkr2mr

)z(0) + . . .+(
i

nr − 1

)
λi−(nr−1)

r (Ckrnr
+ ζ

i−(nr−1)
r1 Nkrnr1 + ζ

i−(nr−1)
r2 Nkrnr2 + . . .+

ζi−(nr−1)
rmr

Nkrnrmr
)z(0) . 0,

where . ∈ {>,≥}. The coefficients Ckj` and Nkj`t are all algebraic vectors and
can be computed explicitly. Moreover, in our case all the conditions and A are
over the reals, hence every coefficient

∑mj

t=1 Nkj`tζ
i
jt will add up to a real number.

A point z(0) is in N if and only if the conditions Condk(z(0), i) are satisfied for
all k and for all i = 0, 1, 2 . . ..

Using the Jordan canonical form of A, we can split the space IRn into the
subspace S+ corresponding to the positive eigenvalues of A, and the subspace So

corresponding to the other eigenvalues. Each v ∈ IRn decomposes uniquely into
a sum v = v+ + vo such that v+ ∈ S+ and vo ∈ So. If we write Condk(z(0)+, i)
we get all Nkj`t’s equal to zero, since there are no vectors in S+ corresponding
to the complex eigenvalues. Similarly, in Condk(z(0)o, i) we get all Ckj`’s equal
to zero.

Observe that the magnitude of the terms

Ckj` + ζi
j1Nkj`1 + ζi

j2Nkj`2 + . . . ζi
jmj

Nkj`mj

remains bounded by a constant independent of i throughout the iteration. Hence
the magnitude of the components of Condk(z(0)) as i tends to ∞ is primarily
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dictated by the
(

i
`− 1

)
λ

i−(`−1)
j terms of the products. These terms have a

clear dominance order as i → ∞. For higher j the terms grow geometrically
faster, because λi

j1
� λi

j2
for j1 < j2. For the same j, terms with higher ` grow

polynomially faster, because
(

i
`1 − 1

)
�

(
i

`2 − 1

)
for `1 < `2 . This yields a

natural lexicographic order ≺ on the pairs of indexes j`:

Ind = {0 ≺ 11 ≺ 12 ≺ . . . ≺ 1n1 ≺ 21 ≺ . . . ≺ 2n2 ≺ . . . ≺ r1 ≺ . . . ≺ rnr}.

The term 0 is the smallest term, it is introduced for completeness in the case of
non-strict inequalities. It does not correspond to any actual index.

Our first step is very similar to [Tiw04]: we solve the problem over the positive
eigenspace S+.

Lemma 6 For every vector z ∈ S+ the program with initial conditions Aqz is
non-terminating for some integer q ≥ 0 if and only if there is a function

indexz : k 7→ indexz(k) ∈ Ind

which maps the condition Condk(z) to the highest ranking nonzero Ck,indexz(k).
All higher ranking coefficients must be zero. In other words, for each k,{

Ck,indz = 0, if ind � indexz(k)
Ck,indz > 0, if ind = indexz(k)

In the case that the k-th inequality is strict we must have indexz(k) � 0.

Proof. First of all note that since z is in S+, only the Ck,ind (and no Nk,ind,t’s)
appear in the expressions for Condk(z, i).

It is obvious that for Aqz to be non-terminating for some q the conditions
Condk(z, i) must be satisfied as i→∞. In particular, the highest ranking coef-
ficient, which dominates the behavior as i goes to infinity must be positive (or
all of them may be 0 in the case of a non-strict inequality). Note that indexz is
a well-defined function for each such z.

Conversely, if the indexz(k) function as in the statement of the lemma exists,
then the dominating term in each Condk(z, i) has a positive coefficient. Hence
the conditions Condk(z, i) are satisfied for sufficiently large i. In particular, there
is a q such that they are satisfied for i ≥ q, making the program non-terminating
on Aqz. �

We denote the set of z’s for which Aqz ∈ N for some q by Ne – “eventually
non-terminating”. Those are the points which might be terminating, but become
non-terminating after finitely many applications of A. Lemma 6 gives a charac-
terization of Ne, and associates a unique function indexz with each z ∈ Ne. We
claim that there is a maximum such function.

Lemma 7 There is a zmax ∈ N ∩ S+ with an index function indexzmax
=

indexmax such that for any z ∈ N ∩ S+, for all k,

indexz(k) � indexmax(k).
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Proof. First we note that Ne is convex. If z1, z2 ∈ Ne, then there is a q such
that Aqz1, A

qz2 ∈ N . N is convex, hence the line segment I connecting Aqz1 to
Aqz2 is in N . The line segment connecting z1 to z2 is mapped to I by Aq, hence
it is in Ne.

Denote z = (z1 + z2)/2. Then it is easy to see that

indexz = max(indexz1 , indexz2).

Thus, there can be only one maximal index function, which is the maximum
index function for some z′max ∈ Ne∩S+. We can take sufficiently many iterations
of z′max to obtain zmax ∈ N ∩ S+.

Note that it is easy to compute zmax and indexmax by considering the con-
straint satisfaction problem corresponding to each index function and choosing
the maximum feasible function and a corresponding zmax. In fact, a generic
element y of N ∩ S+ satisfies indexy = indexmax. �

As mentioned in the beginning of the section, the main idea in finding the
minimal space Smin containing N is that it is spanned by small perturbations
of zmax. The claim is that a small perturbation of zmax is in N as long as we do
not introduce any terms that are more dominant than the currently dominant
ones.

Lemma 8 For a vector v ∈ IRn there is an ε 6= 0 such that zmax + εv ∈ N if
and only if for all k{

Ck,indv = 0, for ind � indexmax(k)
Nk,ind,tv = 0, for ind � indexmax(k), for all t

Proof. The “if” direction. Condk(zmax, i) is dominated by the Ck,indexmax(k)z
term for all i. It will remain positive if we add εv to it for some small ε. By the
condition it will remain dominating, since no non-zero higher order terms are
introduced by adding εv.

The “only if” direction. We first show by contradiction that the first
condition must hold. Suppose that there is a v and ε such that

y = zmax + εv ∈ N,

but Ck,indv 6= 0 for some k and ind � indexmax(k). Decompose y = y+ + yo, so
that y+ ∈ S+ and yo ∈ So. Then Ck,indy = Ck,indy

+. There are two cases:
Case 1: For each k, the highest-ranking non-zero Ck,indy

+ is positive. In
this case y+ ∈ Ne by Lemma 6. By the definition of indexmax we get Ck,indy =
Ck,indy

+ = 0 for all ind � indexmax. Hence Ck,indv = (Ck,indy)/ε = 0, contra-
diction.

Case 2: There is a k such that the highest-ranking non-zero Ck,indy =
Ck,indy

+ is negative. In this case the dominating term of Condk(y, i) has the
coefficient

Ck,indy + ζi
k1Nk,ind,1y + ζi

k2Nk,ind,2y + . . . + ζi
kmk

Nk,ind,mk
y.

10



By Lemma 4 the expression will be negative below Ck,indy infinitely often, hence
Condk(y, i) will be violated infinitely often, contradiction.

Now suppose that for some k and ind � indexmax(k) the second condition
is violated. We already know that Ck,indy = 0, and the dominating term of
Condk(y, i) has the coefficient

C(i) = ζi
k1Nk,ind,1y + ζi

k2Nk,ind,2y + . . . + ζi
kmk

Nk,ind,mk
y,

which is not identically 0. By Lemma 4 we know that there is a c < 0 such
that C(i) < c infinitely often. Since this is a dominating term, it will cause
Condk(y, i) to be violated infinitely often, contradiction. �

Solving the constraint system from Lemma 8 gives us a linear basis for Smin.
The computation is done entirely symbolically over algebraic numbers. Note that
we do not need to know ε from Lemma 8, but merely that such an ε exists. This
solves the termination problem over IR. Our goal now is to tackle the problem
over Q. If Smin = ∅, we can return terminates, otherwise we need to find the
rational subspace of Smin.

4.2 Looking for Rational Points in Smin

If the parameters of the loop are given by rationals, then the spanning vectors
of Smin can be produced as explicit algebraic numbers. Denote by LS the base
vectors for Smin presented as algebraic numbers in some finite degree extension
Q(α) of Q. By viewing Q(α) as a finite-dimensional vector space over Q we can
find the maximum space Qmin of rational vectors spanned by LS . For further
details about computations with algebraic numbers see [Bhu93,Loos83,Yap00].
We illustrate finding the rational subspace with the following simple example.

Example 3. Consider the simple example when Q(α) = Q(
√

2) and LS = {v1 =
(1, 0,

√
2), v2 = (−

√
2, 1, 0)}. We are looking for coefficients β, γ ∈ Q(

√
2) for

which βv1 + γv2 ∈ Q3. By writing β = β1 + β2

√
2, γ = γ1 + γ2

√
2 with

β1, β2, γ1, γ2 ∈ Q we obtain the conditionsβ + (−
√

2)γ ∈ Q
γ ∈ Q
(
√

2)β ∈ Q
⇐⇒

β2 − γ1 = 0
γ2 = 0
β1 = 0

Hence we must have γ = β/
√

2 ∈ Q, and the rational subspace of span(LS) is
one dimensional, spanned by

√
2v1 + v2 = (0, 1, 2). �

There are three possible cases. The first one is that dim(Qmin) = dim(Smin).
This means that the rational points are dense in the nonterminating set N ,
and hence there are nonterminating rational points, and we can return non-
terminating.

If dim(Qmin) = 0, then the only potential nonterminating rational point is
0. It is trivial to check whether 0 is non-terminating in the homogeneous case:
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we just need to check whether it satisfies the loop conditions. If it does we return
non-terminating, otherwise return terminating.

The more difficult and interesting case is when 0 < d = dim(Qmin) <
dim(Smin). In this case there are some rational points in Smin, but we can no
longer guarantee that any of them are in N , since they all lie in a proper subspace
of Smin. The only thing we know is that all potential rational non-terminating
points lie in Qmin. Denote by Rmin the space of real vectors spanned by Qmin.
Obviously dim(Rmin) = dim(Qmin). We prove the following.

Lemma 9 Rmin is invariant under A, that is Av ∈ Rmin for any v ∈ Rmin.

Proof. First of all, the non-terminating set N is invariant under A, since if the
loop is nonterminating on x, it is also nonterminating on Ax. N contains a linear
basis for Smin, hence Smin is invariant under A.

Let q be any rational vector in Qmin. Aq is rational, and Aq ∈ Smin by
the invariance of Smin. Hence by the definition of Qmin (as containing all the
rational vectors in Smin), Aq ∈ Qmin. The rational vectors of Rmin span it,
hence Rmin is invariant under A. �

Rmin is a subspace invariant under A, and it has a rational basis LR =
{r1, . . . , rd}. We can translate the action of A on Rmin with respect to LR, to
obtain a d× d rational matrix A′ such that

A : α1r1 + . . . + αdrd 7→ β1r1 + . . . + βdrd,

where (β1, . . . , βd)T = A′(α1, . . . , αd)T . The conditions Bsx > 0 and Bwx ≥ 0
can also be readily translated into rational conditions over the d-dimensional
coefficient vector (α1, . . . , αd), where x = α1r1 + . . . + αdrd ∈ Rmin. Thus we
obtain a new loop, over d-dimensional vectors

while (B′
sx > 0) ∧ (B′

wx ≥ 0) { x← A′x }
and we need decide termination of the new loop over Q. Note that we have

reduced the dimension of the problem from n to d < n, and thus we will be able
to decide termination over Q in the homogeneous case in at most n iterations.

5 The Integer and the Non-Homogeneous Cases

In the case the program is interpreted over the reals or the rationals, the tran-
sition from general termination to the homogeneous case is done exactly as in
[Tiw04] by adding an extra auxiliary variable z. The program
while (Bsx > bs) ∧ (Bwx ≥ bw) { x← Ax + c }
always terminates if and only if the program
while (Bsx > bsz) ∧ (Bwx ≥ bwz) ∧ (z > 0) { x← Ax + cz, z ← z }
terminates. This is true both over Q and IR. If the first program does not ter-
minate, then the second does not terminate with the same initial condition and
z = 1. In the opposite direction, we can scale a nonterminating starting point of

12



the second program so that z = 1, and thus make it a nonterminating starting
point for the first one.

Note that in the homogeneous case we can scale any nonterminating solution,
and hence termination over Q is always equivalent to termination over ZZ. This
is not true in the non-homogeneous case: termination over Q implies termination
over ZZ, but not vice versa. Thus it can only be used as a partial termination
test. The termination problem over ZZ as well as termination of loops with initial
conditions appears to be much harder and will be discussed in next section.

6 Further Directions and Open Problems

We have seen that termination of deterministic loops with no initial conditions
is decidable over Q and over ZZ in the homogeneous case. On the other hand,
by allowing the linear loop to be general enough one can easily make the termi-
nation problem undecidable. For example, having k different update functions
depending on different conditions

while one of the k conditions is met for 1 ≤ i ≤ k
if Bix > di { x← Aix + ci }

is enough to make the termination problem undecidable, since this class of loops
is sufficiently rich to allow encoding of counter machines [Tiw04].

This gives rise to natural open questions about termination of programs more
general than the ones considered in this paper, but for which termination is still
decidable. One such class are the programs discussed in [PR04]. They are similar
to the ones described here, but have a nondeterministic inequality as an update:

while (Bsx > bs) ∧ (Bwx ≥ bw) { x ≤ Ax + c }
In [PR04] a complete linear ranking function generating algorithm is presented,
but it still leaves the more general termination problem open over either IR, Q
or ZZ.

Another natural generalization is introducing initial conditions and the re-
lated problem of termination over ZZ. It appears that to decide termination over
ZZ it is necessary to be able to tell, given a point x0, whether the program ter-
minates on x0 or not. Solving the termination problem on a given input would
require a much sharper version of Lemma 4. In Lemma 4, we have shown that the
expression zn =

∑m
i=1 αiζ

n
i always eventually falls below zero by at least some

fixed amount c. It is even possible to compute the infimum of the expression
using ergodic theory. However, this still falls short of solving the termination
problem. Consider the following algebraic expression. Here |ζ| = 1, ζ 6= 1:

z(i) = Re(ζi + 1− 2−i).

We would like to know whether z(i) ever falls below 0. This depends on how
close the orbit of ζi gets to −1. To answer this question some analysis of the
continued fraction expansion of log ζ seems to be needed.

We summarize the problems:
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1. Given a deterministic linear loop P and an input x0, does P terminate on
x0?

2. Given a deterministic linear loop P does it terminate on all integer inputs?
3. How much nondeterminism can be introduced in a linear loop with no initial

conditions before termination becomes undecidable?

7 Conclusion

We have demonstrated a first termination decision procedure that works over
the integers for simple homogeneous loop programs. Most programs in practice
are specified over the integers, yet algorithms usually only work with the larger
domain of real numbers because decision procedures are generally easier there.

We have gained new insights into termination of more general deterministic
linear loops. We believe that techniques presented in the paper can be generalized
using more refined analysis to obtain at least a good partial termination test over
the integers for loops with initial constraints.
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